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Introduction

60. Statement of Main Results

The goal of this paper is to present a theory of r-pointed stable curves of genus g over
p-adic schemes (for p odd), which, on the one hand, generalizes the Serre-Tate theory of
ordinary elliptic curves to the hyperbolic case (i.e., 29— 2+ > 1), and, on the other hand,
generalizes the complex uniformization theory of hyperbolic Riemann surfaces (reviewed in
§1 of this introductory Chapter) due to Ahlfors, Bers, et al. to the p-adic case. We begin by
setting up the necessary algebraic machinery: that is, the language of indigenous bundles
(due to Gunning, although we rephrase Gunning’s results in a more algebraic form). An
indigenous bundle is a P!'-bundle over a curve, together with a connection, that satisfy
certain properties. One may think of an indigenous bundle as an algebraic way of encoding
uniformization data for a curve. We then study the p-curvature of indigenous bundles in
characteristic p, and show that a generic r-pointed stable curve of genus g has a finite,
nonzero number of distinguished indigenous bundles (P, Vp), which are characterized by
the following two properties:

(1) the p-curvature of (P, V p) is nilpotent;

(2) the space of indigenous bundles with nilpotent p-curvature is étale over
the moduli stack of curves at (P, Vp).

We call such (P, V p) nilpotent and ordinary, and we call curves ordinary if they admit at
least one such nilpotent, ordinary indigenous bundle. If a curve is ordinary, then choos-
ing any one of the finite number of nilpotent, ordinary indigenous bundles on the curve
completely determines the “uniformization theory of the curve” — to be described in the
following paragraphs. Because of this, we refer to this choice as the choice of a p-adic
quasiconformal equivalence class to which the curve belongs.

After studying various basic properties of ordinary curves and ordinary indigenous
bundles in characteristic p, we then consider the p-adic theory. Let M, , be the moduli
stack of r-pointed stable curves of genus g over Z,. Then we show that there exists a

. . —rord . p .
canonical p-adic (nonempty) formal stack A/ (g)fr together with an étale morphism

—ord —_—
Ng, = Mg,

g,

d . . . .
such that modulo p, N Zfr is the moduli stack of ordinary r-pointed curves of genus g,

together with a choice of p-adic quasiconformal equivalence class. Moreover, the generic
—ord
degree of N

g,r
T
)

—ord
over N/ . that most of our theory will take place. Our first main result is the following:

over M, , is > 1 (as long as 29 — 2+ > 1 and p is sufficiently large). It is
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——ord
Theorem 0.1. Let C'°¢ — (NS;)log (where the “log” refers to canonical log stack struc-

tures) be the tautological ordinary r-pointed stable curve of genus g. Then there exists a

log

——ord
canonical Frobenius lifting ® 7 on (N Z;ﬂ o8 together with a canonical indigenous bun-

dle (P,Vp) on C'°8. Moreover, @ffg and (P,Vp) are uniquely characterized by the fact

(P,Vp) is “Frobenius invariant” (in some suitable sense) with respect to @K}g.

Moreover, there is an open p-adic formal substack C°™* C C of “ordinary points” of

—ord
the curve. The open formal substack C°* C C is dense in every fiber of C over NZ,T. Also,
there is a unique canonical Frobenius lifting

(I)lcog : (Clog)ord . (Clog)ord

which s @ffg-linear and compatible with the Hodge section of the canonical indigenous

bundle (P,Vp). Finally, @?g and @ffg have various functoriality properties, such as func-
toriality with respect to “log admissible coverings of Cl°&” and with respect to restriction to
the boundary of Mg .

This Theorem is an amalgamation of Theorem 2.8 of Chapter III and Theorem 2.6 of
Chapter V. In some sense all other results in this paper are formal consequences of the
above Theorem. For instance,

Corollary 0.2. The Frobenius lifting @f/g allows one to define canonical affine local
coordinates on Mg, at an ordinary point o valued in k, a perfect field of characteristic
p. These coordinates are well-defined as soon as one chooses a quasiconformal equivalence
class to which « belongs. Also, at a point o € ﬂg7r(/<:) corresponding to a totally degenerate

curve, @ffg defines canonical multiplicative local coordinates.

This Corollary follows from Chapter III, Theorem 3.8 and Definition 3.13.

—ord

Let o € N, . (A), where A = W (k), the ring of Witt vectors with coefficients in a
perfect field of characteristic p. If a corresponds to a morphism Spec(A4) — ./\_/;ff which
is Frobenius equivariant (with respect to the natural Frobenius on A and the Frobenius

lifting @ffg on NV gff ), then we call the curve corresponding to v canonical. Let K be the
quotient field of A. Let GLE(—) be the group scheme which is the quotient of GLy(—) by

(+11.

ord

g,r’

—ord . . . . . .
a € N;r (A) that lifts ag. Moreover, if a curve X'°8 — Spec(A) is canonical, it admits

Theorem 0.3. Once one fizes a k-valued point ag of N there is a unique canonical

(1) A canonical dual crystalline (in the sense of [Falt], §2) Galois repre-
sentation p : T (Xg) — GLE(Z,) (which satisfies certain properties);
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(2) A canonical log p-divisible group G*°& (up to {#1}) on X'°% whose Tate
module defines the representation p;

(3) A canonical Frobenius lifting (Dl)?g ;o (Xlog)ord (Xlog)ord pyer the
ordinary locus (which satisfies certain properties).

Moreover, if a lifting X'°® — Spec(A) of ag has any one of these objects (1) through (3)
(satisfying various properties), then it is canonical.

This Theorem results from Chapter III, Theorem 3.2, Corollary 3.4; Chapter IV, Theorem
1.1, Theorem 1.6, Definition 2.2, Proposition 2.3, Theorem 4.17.

The case of curves with ordinary reduction modulo p which are not canonical is more
. . . —ord
complicated. Let us consider the universal case. Thus, let S'°¢ = (N Zr )os; let flog .

,T
Xlog — Glog he the universal r-pointed stable curve of genus g. Let T'°% — S92 be
the finite covering (log étale in characteristic zero) which is the Frobenius lifting @ffg of
Theorem 0.1. Let P'°¢ — S§98 be the inverse limit of the coverings of §'°% which are
iterates of the Frobenius lifting CIJ}S,g. Let X%FO & = X198 x giop T8, Xifg = X198 x 105 P8,

We would like to consider the arithmetic fundamental groups

def lo def lo
II, = 7Tl((AXng)Qp); o = 7T1(<ng)Qp)

Unlike the case of canonical curves, we do not get a canonical Galois representation of II;
into GLE (Z,,). Instead, we have the following

Theorem 0.4. There is a canonical Galois representation

Poo oo — GLg:(Zp)

Moreover, the obstruction to extending po to Il is nontrivial and is measured precisely by
the extent to which the canonical affine coordinates (of Corollary 0.2) are nonzero. Also,
there is a ring DS with a continuous action of m (Tgpg) such that we have a canonical

dual crystalline representation

pr: Tl — GLy (DG™)

(i.e., this is a twisted homomorphism, with respect to the action of 11y (acting through
ﬁl(Tg’f)) on D§™).  Finally, the ring DF* has an augmentation DY — Z, which is

Il -equivariant (for the trivial action on Z,) and which is such that after restricting to
I, and base changing by means of this augmentation, p; reduces to poo.
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This follows from Chapter V, Theorems 1.4 and 1.7.

All along, we note that when one specializes the theory to the case of elliptic curves,
one recovers the familiar classical theory of Serre-Tate. For instance, the definitions of
“ordinary curves” and “canonical liftings” specialize to the objects with the same names
in Serre-Tate theory. The p-adic canonical coordinates on the moduli stack M, ,. (Corollary
0.2) specialize to the Serre-Tate parameter. The Galois obstruction to extending p, to
a representation of II; specializes to the obstruction to splitting the well-known exact
sequence of Galois modules that the p-adic Tate module of an ordinary elliptic curve fits
into.

For more detailed accounts of the results in each Chapter, we refer to the introductory
sections at the beginnings of each of the Chapters. In the rest of this introductory Chapter,
we explain the relationship between the p-adic case and the classically known complex case.

Acknowledgements: 1 would like to thank Prof. Barry Mazur of Harvard University for
providing the stimulating environment (during the Spring of 1994) in which this paper
was written. Also, I would like to thank both Prof. Mazur and Prof. Yasutaka Ihara
(of RIMS, Kyoto University) for their efforts in assisting me to publish this paper, and
for permitting me to hold lecture series at Harvard (Spring of 1994) and RIMS (Fall of
1994), respectively, during which I discussed the contents of this paper. Finally, I would
like to thank Prof. Thara for informing me of the theory of [Ih]|, [Ih2], [Ih3], and [Ih4].
This theory anticipates many aspects of the theory of the present paper (especially, the
discussion of Frobenius liftings and pseudo-correspondences in Chapters I1I and IV). On
the other hand, the techniques and point of view of Prof. Thara’s theory differ substantially
from those of the present paper. Moreover, from a rigorous, mathematical point of view,
the main results of Prof. Thara’s theory neither imply nor are implied by the main results
of the present paper. However, it is the author’s subjective opinion that philosophically,
the motivation behind Prof. Thara’s theory was much the same as that of the author’s.

61. Review of the Complex Theory

In order to explain the meaning of the main results of this paper, it is first necessary
to review the complex theory of uniformization in a fashion that makes the generalization
to finite primes more natural. This is the goal of the present Section. Since all of the
material is “standard” and “well-known,” we shall, of course, omit proofs, instead citing
references for major results. We shall say that a Riemann surface X is of finite type
if it can be obtained by removing a finite number of points pq,...,p, from a compact
Riemann surface Y of genus g. Note that in this case, Y and {p1,...,p,} are uniquely
determined up to isomorphism. We shall say that the Riemann surface of finite type X is
hyperbolic (respectively, parabolic; elliptic) if 29 — 2+ r > 1 (respectively, 2g — 2 4+ r = 0;
2g — 2+ r < 0). In this paper, we shall be concerned exclusively with Riemann surfaces
of finite type (and their uniformizations). This is because it is precisely these Riemann
surfaces which correspond to algebraic objects. Also, we shall mainly be concerned with
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the hyperbolic case, since this is the most difficult. Indeed, from the point of view of
the theory of uniformization and moduli, the elliptic case is completely trivial, and the
parabolic case (although nontrivial) is relatively easy and explicit.

In some sense, the theme of our review of the classical complex theory is that in most
cases, there are two ways to approach results: the “classical” and the “quasiconformal.”
Typically, the classical approach was known earlier, and is more geometric and intuitive.
On the other hand, the classical approach has the drawback of producing theories and
results that are only real analytic, rather than holomorphic in nature. By contrast the
quasiconformal approach, which was pioneered by Ahlfors and Bers, tends to give rise to
holomorphic structures and results naturally. It is thus natural that the connection between
the “quasiconformal approach” and the p-adic theory should be much more natural and
transparent.

Beltrami Differentials

Let X be a Riemann surface (not necessarily of finite type). Let us consider the
complex line bundle 7x ® Wx on X, where Wx is the complex conjugate bundle to the
canonical bundle wx, and 7x is the tangent bundle. Note that if s is a section of 7x ® Wx
over X, then we can consider its L>-norm ||s||~, since the transition functions of 7x ® wx
have complex absolute value 1. A Beltrami differential n on X is a measurable section of
the line bundle

Tx QWx

such that ||p)|e < 1.

Why the bundle 7x ® Wx? The reason is that this bundle is closely connected with
the moduli of the Riemann surface X. Indeed, Let us consider an arbitrary C* section p
of Tx ® Wx. Now since 7x has the structure of a holomorphic line bundle, we have a 0
operator on Tx. If we look at global C* sections, this gives us a complex

C2(X,7x) -2 C®(X,7x ®Dx)

which computes the analytic cohomology of 7x. If X is, for instance, compact, then this
analytic cohomology coincides with the cohomology in the Zariski topology of the algebraic
tangent bundle. Thus, for X compact and hyperbolic, the above complex has cohomology
groups H° = 0, and H! = H'(X, 7x), which is well-known to be the space of infinitesimal
deformations of X. Moreover, if X is compact of genus g > 2, and M, is the moduli stack
of curves of genus g, then H'(X,7x) is precisely the tangent space to M, at the point
defined by X.

At any rate, (for X arbitrary) we have a natural surjection

9



COO(X,TX ®wx) — Hl(X,Tx)

Thus, the image of p under this surjection defines an infinitesimal deformation of the
complex structure of X. This establishes the relationship between sections of

T Q@Wx

and the moduli of X. The reason for considering measurable, rather than just C*°, sec-
tions is that it is easier to obtain solutions to a certain differential equation, the Beltram:
equation, when one works in this greater generality.

The Beltrami Equation

Having established the relationship between sections of 7x ® wx and infinitesimal
deformations, we now would like to integrate — i.e., to “give a reciprocity law” — that
assigns to a section p of 7x ® Wx not just an infinitesimal deformation of X, but an actual
new Riemann surface, i.e., a new complex structure on the topological manifold underlying
X. To do this, we consider the Beltrami equation

of =p-0f

which we regard as a differential equation in the unknown function f. It is a nontrivial
result (proven, for instance, in [Lehto2]) that when p is a Beltrami differential, there
exist local L? solutions f to the Beltrami equation that are homeomorphisms (where they
are defined). Such functions f are called quasiconformal (with dilatation ). If f and
g (defined on some open set U C X) are both quasiconformal with the same dilatation
p, then it is easy to see that 0 applied to f o g~! (in the distributional sense) is zero.
That is, f = h o g for some biholomorphic function h. Thus, up to composition with a
biholomorphic function, quasiconformal solutions to the Beltrami equation are unique.

With these observations, we can define a new complex structure on X associated to
a Beltrami differential p as follows. Let us call the resulting Riemann surface X,,. Thus,
the underlying topological manifold of X, is the same as that of X. On an open set
U C X, we take a local quasiconformal function f of dilatation p, and define it to be
a holomorphic function on X,,. By the essential uniqueness of solutions to the Beltrami
equation, everything is well-defined, and so we obtain a new global Riemann surface X,.
Thus, the assignment

p— Xy,

is the fundamental “reciprocity law” that we are looking for.
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The Series Expansion of a Quasiconformal Function

In order to really understand the Beltrami equation, it is useful to look at the explicit
representation of its solutions as series “in u” (as in [Lehto], pp. 25-27). We begin by
considering Cauchy’s integral formula:

=g, O ]

for a function f with L' derivatives on an open disk D in the complex plane. Thus, if f
(and its L' derivatives) are defined on all of C, and f(z) — 0 as z — oo, then we obtain

f(z) =T 0f

where T is the operator on C* functions w with compact support given by

ro L[| 20

Put another way, (from the point of view of the theory of pseudodifferential operators) T'
is the parametrix for the elliptic differential operator 0. If we define the Hilbert transfor-

mation H by
(" 1 / / dfdﬂ

then we obtain that 9T = H. Also, it can be shown that 9 and 9 commute with both T
and H.

Now let us suppose that p is a Beltrami differential on C (say, with compact support),
and that f is quasiconformal on C with dilatation pu. Then f is holomorphic at infinity,
and so, after normalization, in a neighborhood of infinity, it looks like

—Z—ksz"’

for some b,, € C. Thus, f(z) — z goes to 0 as z — 00, so we obtain that

9f(2) =1+ 0{f(2) — 2}
=1+ 9T{f(2) — 2}
=1+ HOf(2)

11



Thus, since 0f = p - 0f, it follows that

Of =p+p- HOf

This integral equation has the formal solution

f=>_ (u-H)'p

i>0
which converges in L? because

(1) it can be shown that H extends to an isometry L? — L?;

(2) since p is a Beltrami differential, ||u||oc < 1 (which thus explains this
part of the definition of a Beltrami differential).

Thus, applying the operator T', we get the series solution

f(2)=2+T{)_ (n-H)'u}

i>0

to the Beltrami equation.

From our point of view, this series solution has two important consequences. First of
all, the set of all possible p clearly form an open subset of a (rather large) complex vector
space (i.e., the space of measurable sections of Tx ® Wy ). Thus, relative to the complex
structure of this complex vector space, the series solution makes it clear that f depends
holomorphically on p. Second, it computes the infinitesimal change in f as p varies to first

order. Namely, this term is given by ¢ def (). Note that

09 = p

It turns out that this result — that @ applied to the infinitesimal change ¢ in the solution to
the Beltrami equation gives us back p — holds for arbitrary Beltrami differentials u. (See,
e.g., [Gard], p. 72).

The reason why this observation is interesting is as follows. Suppose, for simplicity,
that p is C*°. Let U be an open covering of X such that the intersection of any finite
collection of open sets in U is Stein. Then by considering the standard isomorphism
between the Cech cohomology (with respect to U) and the d-cohomology of Tx, it thus
follows that the infinitesimal deformation X..,, (where €is “small”) in the complex structure
of X given by solving the Beltrami equation is precisely the same as the infinitesimal
deformation given by mapping p to H'(X, 7x) via the surjection

12



COO(X,TX ®wx) — Hl(X,Tx)

considered previously. This completes the justification of the claim that the assignment
p— X, is an “integrated version” of the “infinitesimal reciprocity law”

C®(X,7x ®wx) — HY(X,7x)

that follows just from the definition of the d-cohomology of 7x.
Uniformization of Hyperbolic Riemann Surfaces

_ Let X be a hyperbolic Riemann surface. Let X be its universal covering space. Thus,
X inherits a natural complex structure from X. Then one of the most basic results in the
field is that we have an isomorphism of Riemann surfaces

X=H

where H is the upper half plane. By considering the covering transformations of H — X,
we get a homomorphism (well-defined up to conjugation)

p:m(X)— Aut(H) C PSLy(R)

which we call the canonical representation of X.

There are (at least) two ways to prove this result. The first approach is the classical
approach, and goes back to Koebe’s work in the early twentieth century. It involves
considering Green’s functions G(—,—) on X. There is an intrinsic, a prior: definition of
Green’s functions, which is not important for us here. A posteriori, that is, once one knows
that X = H, we can pull-back the hyperbolic metric

dx? + dy?
Y2

on H to X, so that we obtain a hyperbolic distance function on X. Then G(z,y) (for

x,y € X) is given by the logarithm of the hyperbolic distance between x and y. One can
find a detailed exposition of this approach in [FK].

The second approach (which is more relevant to the p-adic case) is the approach of
Bers ([Bers|). Suppose that X is obtained by removing r points from a compact Riemann
surface Y of genus g. Then one first observes that there exists a Riemann surface X’
which is obtained by removing r points from a compact Riemann surface of genus g and
whose universal covering space X' is isomorphic to H. Then one constructs (from purely
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elementary considerations) a quasiconformal homeomorphism X’ = X. This quasiconfor-
mal homeomorphism defines a Beltrami differential 1 on X', which we can pull back to
X’ = H to obtain a Beltrami differential uz on H. By reflection, one extends puy to a
Beltrami differential z on C. Then we solve the Beltrami equation for zz on C so that we
obtain a quasiconformal homeomorphism

which goes to infinity at infinity. Let I'" be the group of Mdébius transformation of H
defined by the covering transformations of X’ over X’. Thus, H/T” = X’. Then it follows
from the uniqueness of solutions to the Beltrami equation that

Fd:eff~oflof:1
K H

forms a group of Mobius transformations on C. Moreover, from the reflection symmetry
of 1, it follows that fg preserves the real axis, and hence so does I'. It thus follows that

H/T' is a Riemann surface of finite type, and, by the definition of p, that H/T" = X. This
completes the proof.

It turns out that it is this approach of uniformizing a single Riemann surface (for each
g, r) and then “parallel transporting” the result over the rest of the moduli space that will
carry over to the p-adic case.

Uniformization of Moduli Stacks of Hyperbolic Riemann Surfaces

Let M, . be the moduli stack of r-pointed smooth algebraic curves of genus g over C.
Let M, , be its universal covering space. Then the problem of uniformization of moduli is

to give an explicit representation of M g,r- From the point of view of the Beltrami equation,
this amounts to finding a small, finite-dimensional subspace T' of the space of Beltrami
differentials p such that the assignment p — X, defines a covering space map 7' — M, ..

We begin by fixing a “base point” of M, ,., which corresponds to a hyperbolic Riemann
surface X. Let M(X) be the space of Beltrami differentials on X. Let @ be the space
of holomorphic quadratic differentials on X with at most simple poles at the punctured
points. Then there are two approaches to defining morphisms from open subsets of @
into spaces of Beltrami differentials. The first approach is that of Teichmiiller. In this

approach, if ¢ € ), we define a norm
def
o1 < [ el
X

Let V' C @ be the set of ¢ with ||¢|| < 1. Then Teichmiiller’s uniformization map, for
(nonzero) ¢ € V, is given by

14



def 9

where ¢ € T'(X, w?f) is the complex conjugate of ¢. It is easy to see that py defines a
Beltrami differential on X. Thus, we get a morphism V' — M(X). If we compose ¢ — fi4
with g — X, we get a morphism

V— Mg,

The main result of Teichmiiller theory (see, e.g., [Gard], Chapter 6) is that this morphism
induces an isomorphism of V' onto M g,r- One advantage of this approach is that it admits
a very satisfying geometric interpretation in terms of a foliation on X induced by ¢ and
deforming X into X, by deforming a canonical coordinate arising from the foliation. The
main disadvantage of this approach from our point of view, however, is that the morphism
¢ — pg is neither holomorphic nor anti-holomorphic. Thus, it seems hopeless to try to
find an algebraic version of Teichmiiller’'s map.

On the other hand, Bers’ approach is as follows. Since we now know that X can
be uniformized by the upper half plane, let vx be the hyperbolic volume element on X
induced by the hyperbolic volume element

dx A\ dy
Vg = 3
Y

on the upper half plane. Let X° be the conjugate Riemann surface to X. That is, the
underlying topological manifold of X°¢ is the same as that of X, but the holomorphic
functions on X¢ are exactly the anti-holomorphic functions on X. Suppose that ¢ € Q.
Then by conjugating the “input variable,” we obtain that ¢ defines a section ¢¢ of w;@}%.
Now define

def —20°
UXC

He

Then for some appropriate (see [Gard], pp. 100-104) open set V C @, this p, defines
a Beltrami differential on X Integrating, we get a Riemann surface X;. Then the
assignment ¢ — X defines a morphism

Vi— Mg,

where the superscript “c” denotes the conjugate complex manifold. This morphism induces
an isomorphism of V' onto Mg . ([Gard], p. 101). The important thing here is that the
correspondence ¢ — g is holomorphic. Since p — X7 is always holomorphic, it thus
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follows that the isomorphism V = ./T/l/;T is biholomorphic. Put another way, we have a
holomorphic embedding

B:/T/ngﬂa — Q°

which is called the Bers embedding. This embedding will be central to our entire treatment
of the complex theory, and its p-adic analogue will be central to our treatment of the p-adic
theory.

Quasidisks and the Bers Embedding

One can also define the Bers embedding in terms of Bers’ simultaneous uniformization
and Schwarzian derivatives. For details, see [Gard|, pp. 100-101. To do this, we fix an
isomorphism of X with H. Let H® be the lower half plane. Thus, if H uniformizes X,
then H® naturally uniformizes X°¢. Let I' be the group of Mdbius transformiations of C
which are the covering transformations for H = X — X. Then we may think of the space
M(X€) of Beltrami differentials on X as the space of Beltrami differentials on H°® which
are invariant under I'. Let p € M(X°®). Let f# : C — C be the unique quasiconformal
homeomorphism which fixes 0 and 1, goes to infinity at infinity, has Beltrami coefficient p
on H¢ and is conformal on H. Let I'* = ffol'o(f#)~!. Then it follows from the uniqueness
of solutions to the Beltrami equation that I'* forms a group of Md&bius transformations of
C. Moreover, we have conformal isomorphisms

fHHS)/TH = X0 fH(H)/TH = X

It follows that if we take the Schwarzian derivative of the conformal “quasidisk” embedding

f”|HiH‘—>C

we get a [-invariant quadratic differential on H, hence a quadratic differential ¢ (with at
most simple poles at the punctures) on X. The content of the Lemma of Ahlfors-Weill
([Gard], p. 100) is that the assignment:

X, =0

is equal to B° : M;r — (). On the one hand, this description of the Bers embedding is
geometrically more satisfying than the definition given in the previous subsection, but it
has the disadvantage that it obscures the relationship between the hyperbolic and parabolic
cases. So far we have been mainly discussing the hyperbolic case, but we shall discuss the
parabolic case later.
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The Infinitesimal Form of the Modular Uniformizations

Often it is useful to express these modular uniformizations in their infinitesimal form,
as metrics. On the one hand, the global uniformizations can always be essentially recovered
by integrating the metrics, and on the other hand, metrics, being local in nature, can often
be studied more easily.

In the Teichmiiller case, if K is defined by

K-1

ol = Kl

then one obtains a distance function on /K/lvgyr, given by

1
A(X, X,,) = 5log(K)

which turns out to be equal to the general hyperbolic distance introduced by Kobayashi
for an arbitrary hyperbolic complex manifold (see [Gard], Chapter 7, for an exposition).
The infinitesimal form of this distance is given by the norm ||¢|| = [, |#| on quadratic
differentials (see [Royd]).

We shall be more interested in the case of the Bers embedding

B:Mvg7r — Q°

By using the hyperbolic volume form vx on X, we obtain the Weil-Petersson inner product:

) [ 2

for ¢, € Q. It is a result of Weil and Ahlfors that the resulting metric, called the Weil-
Petersson metric on M, ,., is Kahler. Moreover, if we differentiate B, we get, at X, a map
on tangent spaces

dB: QY — Q°

whose inverse is exactly the morphism Q¢ — Q" defined by the Weil-Petersson inner prod-
uct. Finally, the coordinates obtained from the Bers embedding are canonical coordinates
for the Weil-Petersson metric ([Royd]). (We shall review the general theory of canonical
coordinates associated to a real analytic Kéhler metric in §2.)

It turns out that it is precisely the p-adic analogue of the Weil-Petersson metric that
will play a central role in this paper.
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Coordinates of Degeneration

While the Bers coordinates are useful for understanding what happens in the interior
of Mg, they are not so useful for understanding what happens as one goes out to the
boundary, that is, as the Riemann surface degenerates to a Riemann surface with nodes.
To study this sort of degeneration, one fixes a decomposition of the Riemann surface into
“pants,” which are topologically equivalent to an open disk with two smaller disks in the
interior removed. For a detailed description of the theory of pants and the coordinates they
define, we refer to [Abikoff], Chapter 2. In summary, what happens is the following. Let
X be a hyperbolic Riemann surface (of genus g with r punctures), with a decomposition
into pants. We shall call the curves on X which occur in the boundary of the pants
partition curves. There are exactly 3g — 3 + r partition curves, ai,...,a3q—34,. We
assume that this decomposition is “maximal” in the sense that each partition curve is
a simple closed geodesic (in the hyperbolic metric on X). Then it turns out that the
isomorphism class of X as a Riemann surface is completely determined by 3g — 3 + r
complex numbers ¢; = I; €’ (i =1,...,3g — 3+ ), one for each partition curve. Basically
l; describes the circumference of the partition curve «;, while #; describes the angle of
twisting involved in gluing together the boundary curves of two neighboring pants to form
«;. These coordinates (; are called the Fenchel-Nielsen coordinates of X. The degeneration
corresponding to pinching «; to a node is given by [; — 0. This degeneration respects the
hyperbolic metrics involved: that is, if a family of smooth X; degenerates to a nodal
Riemann surface Z, then the hyperbolic metrics on the X; degenerate to the hyperbolic
metric on Z (given by taking the hyperbolic metric on the smooth subsurface of Z which
is the complement of the nodes). Thus, the Fenchel-Nielsen coordinates have the virtue
of admitting a very satisfying differential-geometric description (as just summarized), but
the disadvantage of not being holomorphic.

On the other hand, one can define holomorphic coordinates (as in [Wolp]), as follows.
Recall the quasidisk description of the Bers embedding. Thus, we had a u € M(X°),
and a quasiconformal homeomorphism f# : C — C, together with a new group of Mobius
transformations I'*. Then each «; defines (by integration) an element A; € I'*. Up to
conjugation, A; is of the form z — m; - z for some m; € C with |m;| > 1. This complex
number m; is uniquely defined. Then the coordinates

X; = (m17 s 7m39—3+1")

are holomorphic in p. In [Wolp|, the relationship between these coordinates and the Bers
coordinates is studied. In these coordinates, the degeneration of X corresponding to the
case where the partition curve «; is pinched to a node is given by m; — 1. It turns
out that these coordinates are probably the best complex analogue to the “multiplicative
parameters at infinity” that we construct in the p-adic case.
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The Parabolic Case

So far we have mainly been discussing the case of hyperbolic Riemann surfaces, since
this case is by far the most interesting. However, often it is very difficult to make explicit
computations for hyperbolic Riemann surfaces. Thus, in order to get one’s bearings, it
is sometimes useful to consider the analogous constructions in the parabolic case, where
explicit computations are much easier to carry out. Let X be a parabolic Riemann surface.
Then X is either compact of genus 1, or it is isomorphic to the projective line minus two
points. We shall mainly be interested in the compact case, where there are nontrivial
moduli.

Thus, let X be compact of genus 1. Then one can carry out Teichmiiller theory in
this case (as in [Lehto], Chapter V, §6). One can also define a parabolic analogue of the
Bers embedding, as follows. Namely, we simply copy the formula

def —2¢°
Vxe

He

of the hyperbolic case, except that we take vxc to be the parabolic volume element (as
opposed to the hyperbolic volume element) on X¢, with [,.wvxe = 1. Then one sees (as
in [Lehto], p. 220) that one obtains a holomorphic embedding

Bio: Miog— Q°

whose image is an open disk D C Q° of some radius. One can also define a Weil-Petersson
metric on M o by simply replacing the hyperbolic volume element used before by the
parabolic volume element. A simple calculation then reveals that one obtains the standard
hyperbolic metric on the open disk D. In particular, (just as in the hyperbolic case), the
standard coordinate on D is normal at 0 for the Weil-Petersson metric.

One thing that is interesting about this parabolic case is that even though the complex
analytic stacks M o and M ; are isomorphic, the “Bers theory” differs substantially in
the two cases. For instance, the Bers embedding of /\7171 is far from being an open disk.
In fact, (as the author was told by C. McMullen) the boundary of this hyperbolic Bers
embedding has lots of cusps. A computer-generated illustration of this boundary appears in
[McM]. Also, it is not difficult to show that the Weil-Petersson metrics are quite different.
This contrasts considerably with the “Teichmiiller theory” of Mj o and Mj ;: Indeed,
since Teichmiiller’s metric always coincides with Kobayashi’s intrinsic hyperbolic metric,
it follows that the Teichmiiller metrics of M ¢ and M ; coincide.

Real Curves

A Riemann surface X of finite type is called realif X = X°. In other words, this means
that the C-valued point defined by X in the algebraic stack (M, ,)r (over Spec(R)) is,
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in fact, defined over R (up to perhaps reordering the marked points). Various interesting
properties of real Riemann surfaces (related to uniformization theory) are studied in [Falt2].
Many of these properties are obtained by looking at various one-dimensional real analytic
submanifolds of a real X.

From our point of view, however, the notable fact about real hyperbolic Riemann
surfaces X is the following. Let ¢ : X = X° be a holomorphic isomorphism. For simplicity,
suppose that there exists a point € X such that ¢(x) = x°, and that ¢° o ¢ = idx. Fix
an isomorphism X = H. This induces an isomorphism X¢ 2 H°. On the other hand, ¢
induces a holomorphic isomorphism ¢ : H — H¢. Let C': H° — H be the conjugation
map. Let v = C o ¢. Thus, ¢ is an anti-holomorphic automorphism of H. Now let
IIc = m(X,x). Since X€¢ has the same underlying topological space as X, we have
IIe = 71 (X, 2°). Thus, ¢ induces an automorphism ¢y of Ilc of degree 2. Let IIg be the
extension

1 —1Il¢g — g — Gal(C/R) — 1

which is the crossed product of Il with Gal(C/R) given by letting the nontrivial element
of Gal(C/R) act on II¢ by means of ¢r;. Now let us consider the Lie group

G(R) Y {M € GLy(R)| det(M) = £1}/{*1}

Thus, PSLy(R) € G(R) € GLE(R), so we can write

pPC : HC — GL%‘Z (R)

for the canonical representation of X (uniformized by the upper half plane H). Note that

a b
the full group GL3 (R) acts on the upper half plane as follows: if A = ( ) € GLF (R),
c d
we let
aw +b
Al2) =
() cw+d

where w = z (respectively, w = Z) if det(A) is positive (respectively, negative). Thus,
the map defined by A is a holomorphic (respectively, anti-holomorphic) automorphism
of H if det(A) is positive (respectively, negative). In particular, the anti-holomorphic
automorphism v : H — H defines an element (which by abuse of notation we call) ¢ €
G(R). Now note that if v € I, then v - p(v) - =1 = p(én(y)). Thus, by mapping the
nontrivial element of Gal(C/R) in the crossed product definition of IIg to 1, we see that
we obtain a natural homomorphism

pr : I — GLE(R)
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which extends pc and is such that the composite with the determinant det : GL2i (R) —
R* is trivial on II¢ and equal to the sign representation on Gal(C/R). It is this repre-
sentation pr that will be relevant to our discussion of the p-adic case.

§2. Translation into the p-adic Case

In this Section, we discuss the dictionary for translating the complex analytic theory
of §1 into the p-adic results discussed in §0. Undoubtedly, the most fundamental tool,
which is, in fact, of an algebraic, not an arithmetic nature, is the systematic use of the
indigenous bundles of [Gunning]. This enables one to get rid of the upper half plane, and
thus to bring uniformization theory into a somewhat more algebraic setting. In any sort
of nontrivial arithmetic theory of this nature, however, algebraic manipulations alone can
never be enough. Thus, the fundamental arithmetic observation is the following:

Kdahler metrics in the complex case correspond to Frobenius actions in
the p-adic case.

Since one typically gets a natural Frobenius action for free modulo p, a Frobenius action
typically means a canonical lifting of the natural Frobenius action modulo p. In fact,
in some sense, if one sorts through the complex analytic theory reviewed §1, one can
essentially distill everything down to two objects, both of which happen to be Kahler
metrics:

(1) the hyperbolic metric on a hyperbolic Riemann surface (which encodes
the upper half plane uniformization); and

(2) the Weil-Petersson metric on the moduli space (which encodes the Bers
uniformization).

Moreover, these two metrics are related to each other in the sense that the latter is essen-

tially the push-forward of the former. In a similar way, the p-adic theory revolves around
two fundamental Frobenius liftings:

(1) the canonical Frobenius lifting on a canonical hyperbolic curve; and

(2) the canonical Frobenius lifting on a certain stack which is étale over
the moduli stack.

The goal of this Section is to explain this analogy in greater detail.
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Gunning’s Theory of Indigenous Bundles

Let X be a compact hyperbolic Riemann surface. Let H — X be its uniformization
by the upper half plane. Then by considering the covering transformations of H — X, we
get a homomorphism (unique up to conjugation)

p:m(X)— Aut(H) C PSLy(R)

which we call the canonical representation of X. If we regard p as defining a morphism
into PSLy(C), then we obtain (in the usual fashion), a local system of P-bundles on X,
which thus gives us a holomorphic P!-bundle with connection (P,Vp) on X. By Serre’s
GAGA, (P,Vp) is necessarily algebraic. It turns out that P is always isomorphic to a
certain P1-bundle of jets (which is also entirely algebraic). Thus, the upper half plane
uniformization may be thought of as just being a special choice of connection Vp. A pair
“like” (P, V p) (satisfying certain technical properties discussed in Chapter I, §2) is called
an indigenous bundle. By working with log structures, one can also define indigenous
bundles in a natural way for smooth X with punctures, as well as for nodal X.

As emphasized earlier, the point of dealing with indigenous bundles is that they allow
one to translate the upper half plane uniformization into the purely algebraic information
of a connection on P. Of course, how one chooses this particular special connection on P
is very nontrivial arithmetic issue. We shall call the pair (P, V p) consisting of P equipped
with this particular connection the canonical indigenous bundle on X. Universally, over
the moduli stack ﬂg,r (of stable r-pointed curves of genus g over C), the space of all
indigenous bundles forms a holomorphic torsor

Sgr = Mg,

log
My./C
we shall see (in Chapter I, §3) that this torsor is highly nontrivial. In the real analytic

category, however, the canonical indigenous bundle determines a trivializing section

over the logarithmic cotangent bundle 2 of My ,. In the holomorphic category,

sg:Sgr — Mg,

of this torsor.

In fact, indigenous bundles also allow us to translate such differential-geometric in-
formation as the hyperbolic geometry of X into algebraic terms. For instance, consider
the degeneration of Riemann surfaces from the point of view of hyperbolic geometry. As
reviewed in §1, this may be thought of in terms of certain geodesic partition curves whose
lengths go to zero as a family of smooth X; degenerates to a nodal Riemann surface Z.
From the complex theory, we know that the hyperbolic metric on X; degenerates to the
hyperbolic metric on Z. Using indigenous bundles, we can translate this into a more al-
gebraic statement as follows: We define the canonical indigenous bundle on Z to be the
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indigenous bundle obtained by gluing together the canonical indigenous bundles of the
pointed Riemann surfaces occurring in the normalization of Z. Then the statement is that
as X; degenerates to Z, the canonical indigenous bundle on X; degenerates to the canon-
ical indigenous bundle on Z. The statement that the lengths of the partition geodesics
go to zero then takes the form that the monodromy of the limit indigenous bundle of the
canonical indigenous bundles of the X;’s is nilpotent at the nodes.

The Canonical Coordinates Associated to a Kahler Metric

In this subsection we discuss how a Kéahler metric on a complex manifold can be used to
define canonical affine, holomorphic coordinates on the manifold locally in a neighborhood
of a given point. We believe that what is discussed here is well-known, but our point of
view is somewhat different from that usually taken in the literature.

Let M be a smooth complex manifold of complex dimension m. The complex analytic
structure on M defines, in particular, a real analytic structure on M. Let p be a real
analytic (1,1)-form on M that defines a Kdhler metric on M. In particular, p is a closed
differential form. Let M€ be the conjugate complex manifold to M: that is to say, we take
M*€ to be that complex manifold which has the same underlying real analytic manifold
structure as M, but whose holomorphic functions are the anti-holomorphic functions of
M. Let us fix a point e € M. Let N be the germ of a complex manifold obtained by
localizing the complex manifold M°¢ x M at (e,e) € M°® x M (where this last expression
makes sense since M¢ has the same underlying set as M). Let QP! (respectively, Q%) be
the holomorphic vector bundle on IV obtained by pulling back the bundle Q,; (respectively,
Q<) of holomorphic differentials on M (respectively, M) to M x M via the projection
M¢ x M — M (respectively, M® x M — M¢), and then restricting to N. Thus, in
summary, we have a 2m-dimensional germ of a complex manifold N, together with two
m-dimensional holomorphic vector bundles (locally free sheaves) QP! and Q" on N.

Note that locally at e € M, the fact that p is real analytic means that we can write
1 as a convergent power series in holomorphic and anti-holomorphic local coordinates at
e. In other words, if we restrict u to N, we may regard p|y as defining a holomorphic
section of NPl @y Q1 (where Oy is the sheaf of holomorphic functions on N). Let d"°!
(respectively, d®) be the exterior derivative on N with respect to the variables coming
from M (respectively, M¢). Note that since Q"' is constructed via pull-back from M, we
can apply d*™ to sections of Q"!. We thus obtain a sort of de Rham complex with respect
to dnt:

dant dant

0 — Qb @ gholg  Qant a Ol g (A20mt) 4

Relative to this complex, the section u|y of QP! @ Q2" satisfies d®™ p|y = 0 (since u is a
closed form). It thus follows from the Poincaré Lemma that there exists a (holomorphic)
section a of Q! that vanishes at (e,e) € N and satisfies d®"* a = p|y. Let M, be the
germ of a complex manifold obtained by localizing M at e € M. Let
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LM — N

be the inclusion induced by the map M¢ — M€ x M that takes f € M° to (f,e) € M x M.
Then ¢*(«) defines a holomorphic morphism 8 : MS — Qpr., where Q7. is the affine
complex analytic space defined by the cotangent space of M at e. Note, moreover, that
although « (as chosen above) is not unique,  is nonetheless independent of the choice
of . Moreover, ( is an immersion: Indeed, to see this, it suffices to check that the map
induced by 3 on tangent spaces is an isomorphism, but this follows from the fact that
d* o = p|y, and the fact that the Hermitian form defined by pu is nondegenerate.

In summary, we see that from the Kahler metric x4, we obtain a canonical holomorphic
local affine uniformization

B Me — Qjye

Pulling back the standard affine coordinates on f, . gives us a canonical collection of
holomorphic coordinates on M..

Definition 2.1. We shall refer to these coordinates as the canonical holomorphic local
coordinates of the Kdihler manifold (M, u) at e. We shall refer to 3¢ as the canonical local
affine uniformization of the Kdhler manifold (M, u) at e.

Now let us consider some basic well-known examples:

Example 1. Let M = {z € C| |z| < 1}, with the standard hyperbolic metric j%.
Then z is a canonical coordinate at 0. Indeed, to see this it suffices to note that d*°!(z-dz) =
dz A dz, which is equal to the metric modulo the ideal generated by Z in Op. Note that by
the Kobe uniformization theorem, this example essentially covers all hyperbolic Riemann
surfaces.

Example 2. Let M be the Teichmiiller space of Riemann surfaces of genus g with r
punctures, where 2g — 2 +r > 1. Then as stated earlier, it is known ([Royd]) that the
coordinates arising from the Bers embedding are canonical coordinates with respect to the
Weil-Petersson metric on M. In fact, in this case, by Theorem 2.3 (proven below) the real
analytic section sy defined by the canonical indigenous bundle essentially already serves

as an “a” in the above discussion. Thus, in a very real sense, the section sy already is the
Bers embedding.

24



The Weil-Petersson Metric from the Point of View of Indigenous Bundles

Let X be a compact hyperbolic Riemann surface. Let (7 : P — X,Vp) be the
canonical indigenous bundle on X. Let Ad(P) = m.7p,x be the push-forward of the
relative tangent bundle of . Thus, Ad(P) is a rank 3 vector bundle on X, equipped
with a simple Lie algebra structure, hence with a nondegenerate Killing form < — — >:
Ad(P)®o, Ad(P) — Ox. Moreover, V p induces a connection Vq on Ad(P). Moreover,
as an indigenous bundle, Ad(P) comes equipped with a section o : X — P (the “Hodge
section”) which defines a Hodge filtration F"(Ad(P)) on Ad(P). (See Chapter I for more
details.) At any rate, we can take the first de Rham cohomology H{)g (Ad(P), Vaq) module
of (Ad(P),Vaq). The Hodge filtration on Ad(P) then defines a Hodge filtration on the de
Rham cohomology, hence an exact sequence:

0 — H(X,w$?) — Hpr(Ad(P),Vaq) — H (X, 7x) — 0

On the other hand, recall the representation that we used to define (P, Vp):

p:m(X)— Aut(H) C PSLy(R)

Let Ad(VRr) denote the 71 (X )-module obtained by letting m1(X) act on the Lie algebra

slo(R) by applying p and then conjugating matrices. Let Ad(V) def Ad(Vr) ®r C. Then

(it is elementary that) we have a “comparison theorem” that gives a natural isomorphism

between the de Rham cohomology module just considered and the group cohomology of
Ad(Ve):

Hpgr(Ad(P), Vaa) = H' (m1(X), Ad(Ve))

On the other hand, we also have:

H' (7 (X),Ad(Ve)) =2 H' (m1(X),Ad(VR)) ®r C

which, combined with the above comparison theorem, thus gives a real structure on
H}L R (Ad(P),Vag). One way to express this real structure is as an R-linear conjugation
morphism (read: “Frobenius action”) cpr : Hhg(Ad(P),Vaa) — Hpr(Ad(P), Vaa)-

Now let us consider the relationship between cpr and the Hodge filtration. If we
compose the natural inclusion H%(X,w$%?) — Hr (Ad(P), Vaqg) with epr followed by the
natural projection Hjg (Ad(P),Vaqa) — H' (X, 7x), we obtain a C-bilinear form

B HY(X,w®?) 9c H(X,w®?)° — C

(1P

(where the superscript “c” stands for the complex conjugate C-vector space).
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Proposition 2.2. The form 3 is precisely the Weil-Petersson metric on quadratic differ-
entials defined in §1 by means of integration. In particular, (B is nondegenerate.

Proof. 1In order to obtain 3, we implicitly used the special case of Serre duality given by
HY(X,7x) = H°(X,w$?). But in the complex analytic context, the pairing that defines
this sort of duality is given by integrating the product of ((0,1)— and (1,0)—) forms. The
volume form vx appears for the sake of defining the duality between wx and wx. With
these remarks, the claim of the Lemma becomes a tautology. ()

Now let us recall the real analytic section sy : Mgﬂn — ggyr. Since gg,r — Mg,r is a
. Y . . . log _lig
holomorphic torsor, we may form 0sg, which gives a section of Qmw /C v Ter On the

. . . —1
other hand, the Weil-Petersson metric also defines a section pwp of Qloe x

My .»/C ® Mg,r/C
Now we have the following result (stated in [ZT], but from a somewhat different point of
view):

Theorem 2.3. The form Osy is equal to piwp.

Proof. By introducing log structures, one can handle the general case; here, for simplicity,
we restrict our attention to the case of smooth compact Riemann surfaces. Let us consider
the composite of the natural inclusion H°(X,w$?) <« H}y (Ad(P), Vaq) with cpr followed
by the natural projection Hpg (Ad(P), Vaa) — H' (X, 7x); this composite gives a C-linear
morphism:

HY(X,w$?) — HY(X,7x)°

which is invertible by Lemma 2.2. Taking its inverse, and dualizing, we obtain an element

§ € H'(X,w$?) @c H(X,w$?)"

On the other hand, sorting through the definitions, it is a tautology in linear algebra that
the value of Osy at the point [X] € M, is given by 6. But, combining this with Lemma
2.2, we see that we have proven the Theorem. ()

The important point here is that this Theorem shows that:

The Weil-Petersson metric, and hence the Bers embedding, is obtained
precisely by considering the extent to which “Frobenius” — i.e., complex
conjugation — is compatible with the canonical indigenous bundle section

SH-
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Stated in this way, the classical complex theory becomes all the more formally analogous
to the p-adic theory to be discussed in this paper.

The Philosophy of Kahler Metrics as Frobenius Liftings

Before going into a detailed account of the correspondence between complex and p-
adic results, we pause to explain some of the motivation for considering Kéhler metrics as
Frobenius liftings. Let S be a smooth p-adic formal scheme over Z,,. A Frobenius lifting on
S'is a morphism ® : S — S whose reduction modulo p is equal to the Frobenius morphism
in characteristic p. Then the main point of the analogy is that just as (real analytic) Kédhler
metrics define canonical coordinates (as discussed above), Frobenius liftings & : § — S
(that satisfy a certain technical condition called ordinariness — see Chapter 111, §1 for
details) also define canonical coordinates, as follows:

The most basic example of an ordinary Frobenius lifting is the case when S is the
p-adic completion of Z,[T,T~'] (where T is an indeterminate), and ®~!(7T") = TP. Then
the theory of ordinary Frobenius liftings (Chapter I11, §1) states that by means of a certain
“integration” procedure, every ordinary Frobenius lifting on an arbitrary S becomes (after
completing at a point of S) isomorphic to a product of copies of this basic example. This
“integration procedure” is thus analogous to the integration procedure just reviewed which
allowed us to construct canonical coordinates associated to real analytic Kahler metrics.

The Dictionary

The fundamental “nuts and bolts” of the complex theory lies in the Beltrami equa-
tion. Suppose that we think of the Beltrami equation not as a differential equation whose
unknown is the quasiconformal function f,, but instead as an equation whose unknown
is the conformal quasidisk embedding function f*|g (in the discussion of quasidisks). A
quasidisk embedding of the universal covering space of a hyperbolic Riemann surface X
defines an indigenous bundle (P,Vp), on X in a natural way. Thus, from this point of
view, we can think of the Beltrami equation as an equation whose unknown is (P, Vp),,.
Moreover, the Beltrami coefficient p defines the “shearing” or distortion factor between
z and z. Thus, in summary, we may regard the Beltrami equation as an equation in the
unknown (P, Vp), in terms of the distortion factor (effected by the quasidisk embedding
f*| i) between z and its “Frobenius conjugate” Z.

On the other hand, the “nuts and bolts” of the p-adic theory lies in the study of the
Verschiebung on indigenous bundles, which occupies most of Chapter II. As a function
on the indigenous bundles of a hyperbolic curve in characteristic p, the Verschiebung —
which is essentially the determinant of the p-curvature — measures the distortion factor
between applying Frobenius to an infinitesimal on the curve and applying Frobenius to an
infinitesimal motion in the (“quasidisk”) uniformization defined by the indigenous bundle.
Thus, for instance, when the p-curvature is nilpotent, there is no distortion factor, and so
the indigenous bundle provides the “right” uniformization for the curve. In this sense, we
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feel that there is an analogy between the Beltrami equation in the complex theory and the
Verschiebung on indigenous bundles in the p-adic theory.

Relative to this analogy, the fundamental existence and uniqueness theorem for solu-
tions to the Beltrami equation becomes the result (in Chapter II) that the Verschiebung on
indigenous bundles is finite and flat. Since in the p-adic case, its degree is not one, we only
have uniqueness up to a finite number of possibilities. This is why we get several distinct
“quasiconformal equivalence classes” in the p-adic case. Moreover, the important integral
operator “T"” —i.e., the parametrix to 0 — which gives the first term in the series expansion
for f, may be regarded as having its analogue in the p-adic theory in the infinitesimal
Verschiebung, which plays an important role throughout the paper.

More obvious is the analogy between the canonical representation pc : m(X) —
PSLs(R) of a hyperbolic Riemann surface (arising from the upper half plane uniformiza-
tion), and the canonical representation poo : s — GL3(Z,) of an ordinary p-adic curve
(in Theorem 0.4). Of course in the p-adic case, Il has a substantial arithmetic part in
addition to its geometric part. Although generally in the complex case, there is not much
of a Galois group to work with, at least for real curves, we saw at the end of §1, that one
does get a natural representation pr of the full “arithmetic fundamental group” Ilg into
GLQi(R). Moreover, our approach to constructing p., in the p-adic case is very much akin
to Bers’ approach to constructing pc in the complex case: Namely, if one traces through
the proof (which lies in Chapters I through V), one sees that effectively what we are doing
is noting that the result is true for totally degenerate curves, and then transporting this
result over the rest of the moduli stack of ordinary curves.

Next let us consider metrics and geometry. As we stated earlier, in some sense,
one can summarize the entire complex theory by saying: We start with the hyperbolic
(Kéhler) metric on a hyperbolic curve, define the Weil-Petersson (Kéhler) metric on the
moduli stack precisely so as to be compatible with the hyperbolic metric on the curves
being parametrized; then our holomorphic uniformizations —i.e., both the upper half plane
uniformization of the hyperbolic curve and the Bers uniformization of the moduli stack
— are obtained by “integrating” the respective metrics. Similarly, the fundamental result
in the p-adic theory — namely, Theorem 0.1 — is a result about the existence of certain
Frobenius liftings on the universal hyperbolic curve and its moduli stack which are uniquely
characterized by the fact that they are compatible with each other. Here the compatibility
is expressed through the tool of the canonical indigenous bundle. Then, by “integrating”
these Frobenius actions, we obtain canonical (p-adically holomorphic) coordinates (as in

Corollary 0.2) on C°™ and A/ Zfs . This particular analogy lies at the heart of this work.

The Bers coordinates and the coordinates of Chapter I1I, Theorem 2.4, are appropriate
in the locus M, , of smooth curves. For totally degenerate curves, one has multiplicative
parameters (Chapter 111, Definition 2.7) which we believe are analogous to the holomorphic
coordinates of degeneration of [Wolp], reviewed in §1. For instance, both sets of parameters
are holomorphic and naturally indexed by the nodes of the totally degenerate curve.

For elliptic curves — regarded parabolically — one has, on the one hand, the well-known
theory of the hyperbolic upper half plane, or unit disk, in the complex case, and Serre-
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Tate theory in the p-adic case. It is interesting to note that at both types of primes
(complex and p-adic), the parabolic theory may be obtained in a very precise sense as
the parabolic specializations, respectively, of Bers’ theory and of the hyperbolic p-adic
theory developed in this paper. In fact, this is one of our reasons for feeling that the
canonical p-adic coordinates of Corollary 0.2 are the p-adic analogue, not of Teichmiiller’s
coordinates, but of Bers’: Namely, in addition to the fact that Teichmiiller’s coordinates are
not holomorphic, whereas Bers’ are, Teichmiiller obtains the same coordinates for 1-pointed
curves of genus 1 and parabolic elliptic curves. On the other hand, it is well-known that
Bers’ coordinates are very different for 1-pointed curves of genus 1 and parabolic elliptic
curves, which is consistent with the fact that the canonical coordinates of Corollary 0.2
are also very different for 1-pointed curves of genus 1 and parabolic elliptic curves.

Loose Ends

We close by saying that although, as described above, there are (what the author
believes to be) very strong analogies between Bers’ complex theory and the p-adic theory
presented here, the picture is by no means complete. For instance, one fundamental fact
in the complex case is that all r-pointed smooth curves of genus g are quasiconformally
equivalent, whereas in the p-adic case, the theory behaves as though there are several
different quasiconformal equivalence classes that are permuted around to each other by a
certain monodromy action in such a way that there seems to be no one quasiconformal
equivalence class “which is better than the others.” Ideally, one would like to have a much
more complete understanding of this phenomenon. In particular, one would like to know
precisely how many quasiconformal equivalence classes there are (at least generically), as
well as a more explicit description of the set of such classes.

Also, I still do not understand what the complex, or global, analogue of a “canoni-
cal p-adic curve” is. For ordinary elliptic curves, since Serre-Tate canonical liftings have
complex multiplication, one can ask what the hyperbolic analogue of having complex mul-
tiplication is. Since having complex multiplication for an elliptic curve means having lots
of isogenies, it is natural to ask if the proper hyperbolic analogue is having lots of cor-
respondences, which are a sort of higher genus version of isogenies. If a hyperbolic curve
does have a lot of correspondences, then one knows ([Marg]) that the image of its canonical
representation is arithmetic. In Chapter IV, we prove that a canonical curve has lots of
“pseudo-correspondences,” but unfortunately, at the time of writing, I do not see how to
make these pseudo-correspondences into genuine correspondences, so that one could apply
Margulis’ result. Another issue that arises in this connection is the question of whether one
can characterize “hyperbolic curves with complex multiplication” — whatever the correct
definition should be for this term — in terms of the Bers coordinates.

Finally, as the title implies, the present work deals exclusively with the case of ordinary
curves. In a complete theory, one would like to know what happens when one has a
nilpotent indigenous bundle which is not ordinary.
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At any rate, in summary, with respect to these three issues of quasiconformal equiv-
alence classes, canonical curves, and non-ordinary curves, much work remains to be done.
We hope to be able to address these issues in future papers.
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Chapter I: Crystalline Projective Structures

§0. Introduction

The purpose of this Chapter is to study the algebraic analogue of projective structures
on a Riemann surface. In particular, we prove many of the analogues of results of [Gunning]
in a purely algebraic framework, often making use of the crystalline site where complex
analytically one would restrict to a simply connected neighborhood on which one can
integrate. Unlike Gunning, we make systematic use of the log structures of [Kato], which
enable us to work with a very general sort of “log-curve,” that is, we can handle the case
of curves with marked points, as well as singular nodal curves on an equal footing to the
smooth case.

In §1, we discuss the notion of a Schwarz structure, which is the algebraic analogue of
[Gunning]’s projective structures. We relate Schwarz structures to projective bundles with
connections as well as to square differentials, and we show that Schwarz structures naturally
give rise to a Schwarzian derivative. (Moreover, in the Appendix to this Chapter, we show
that for P!, this abstract notion of a Schwarzian derivative essentially coincides with the
classical Schwarzian derivative.) The characterizing feature of §1 is that everything takes
place locally on the curve in question. In §2, we discuss indigenous bundles (the direct
algebraic analogue of [Gunning]’s indigenous bundles). What distinguishes §2 from §1 is
that in §2, we work mainly over stable curves, and thus global issues on the curve come
into play. In §2, we are still working locally, however, on the base. In §3, we perform
various intersection theory calculations that allow us to prove that in most cases, there
do exist any canonical indigenous bundles on the universal smooth curve over a moduli
stack. Thus, in §3, we are concerned with issues that are global not only on the curve, but
also on the base. It should be said that all the material in this Chapter is, in some sense,
“well-known,” but I do not know of any modern reference that does things from this point
of view. In particular, all the references that I know of (with the exception of [Ih], which
is algebraic, but somewhat different in point of view) discuss things only in the complex
analytic case, and often work with “h,g’s” (i.e., cocycle classes) rather than with objects
that have an intrinsic meaning.

§1. Schwarz Structures

In this Section, we introduce the crystalline analogue of what Gunning calls “projective
structures on a Riemann surface.” (We shall call them Schwarz structures (after the
Schwarzian derivative) to distinguish them from the analytic notion.) We begin by letting
S be a connected noetherian scheme. Often, we shall prove results about arbitrary stable
curves by working on various compactified moduli stacks. Thus, even if one is ultimately
interested only in smooth curves, for certain proofs, we shall see that it is useful to develop
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the machinery for arbitrary stable curves. To deal with singular curves, we shall use the
theory of log schemes of [Kato]. Thus, we assume that S has a given fine ([Kato], §2) log
structure, and denote the resulting log scheme by S'°8.

Notation and Basic Definitions

Definition 1.1. Let f1°8 : U'°¢8 — §1°8 be a morphism of log schemes whose underlying
morphism of schemes f : U — S is of finite type, flat and of relative dimension one. Then
we shall say that f1°% is locally stable of dimension one if, for every point u € U, there
exist étale morphisms 7" — S and V' — U xg T, together with v € V mapping to u € U
such that when we pull-back the log structure on S (respectively, U) to T (respectively,
V) to obtain log schemes V'°8 and T'°8, one of the following holds:

(1) V — T is smooth, and V'°8 = V xp T'2 (where V and T denote the
log schemes with trivial log structure); or

(2) V. — T is smooth, and there exists a section s : 7" — V such that if we
denote by V* the log scheme defined by the relative divisor Im(s) on V,
then V1°8 = V& xp T98; or

(3) let Y = Spec(Z[t]); X = Y([z,y]/(zy —t) (where x, y, and t are indeter-
minates) and endow Y (respectively, X) with the log structure arising
from the divisor ¢ = 0 (respectively, xy = 0), so we get a morphism
Xlog _ Ylog of log schemes; then there exists a morphism of log schemes
T'°¢ — Y8 together with a morphism ('8 : V& — T8 x ), Xlog
such that the underlying scheme morphism ¢ of ¢'°8 is étale, and the

log structure of V1% on V is the pull-back via ¢ of the log structure on
T'%8 X y10s X108,

In case (1) (respectively, (2); (3)), we shall say that f is smooth and unmarked (respectively,
marked; singular) at u.

Note that if f1°8 : U°s8 — Sl is locally stable of dimension one, then it is always log
smooth ([Kato], §3). Also, note that by étale descent, the images in U of all the sections
s as in Case (2) above form a divisor in U which is étale over S. We shall refer to this
divisor as the divisor of marked points in U.

Now let us suppose that there exists an odd prime p which is nilpotent on S. We also
suppose that we are given a closed subscheme Sy = V(Z) C S, where the sheaf of ideals
7T has a divided power structure . We denote the log scheme Sy x g S°¢ (where Sy and
S denote the log schemes which are the respective schemes endowed with the trivial log
structure) by Séog. Let flog . Ulos — Slog he Jocally stable of dimension one. Then we
shall call a section of D (U8 X gios U'°8) (the PD-envelope of the diagonal, as in [Kato],
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§5) a bianalytic function over U8, Note that the bianalytic functions form a sheaf, which
we denote Oymwi, on the étale site of U. Let Oy denote the sheaf on the étale site of U
given by considering ordinary functions. Then the two projections U xg U — U give rise
to injections iy, : Oy — Oywi and ig : Oy — Oypi whose images we shall call the left-sided
(respectively, right-sided) bianalytic functions on U8, We shall also refer to right-sided
bianalytic functions as constant bianalytic functions, or bianalytic constants. We denote
tensor products of an Oy-module F over Oy with Oyni via i, (respectively, ig) by writing
F on the left (respectively, right). Finally, we have a multiplication morphism p : Oypi —
Oy We denote the ideal subsheaf of O;ni which is the kernel of p by J. We shall say
that a bianalytic function f over some étale V' — U is a bianalytic uniformizer on V if f
is, in fact, a section of J which generates the line bundle J/J 2] o Wrlos / glog S A1l Oy-

module. Let Ozjbi be the completion of Oyw:i with respect to the divided powers J [l and

let J C Or: be the closure of J in O, We shall call sections of Op,; biformal functions,
and use similar terminology for biformal functions as we do for bianalytic functions.

Occasionally, we shall also need to make use of trianalytic (respectively, triformal)
functions, i.e., sections of Da (U8 X gios U'°8 X g10s U'°8) (respectively, its completion with
respect to the divided powers of the diagonal ideal). We denote the sheaf of trianalytic
functions (respectively, triformal) on the étale site of U by Oy (respectively, OLA{“)’ and
we have left, right, and middle injections j1,j2,73 : Oy — Oyer, as well as injections
J125 J23, J13 + Oywi — Oyee. We shall apply similar terminology and notation to trianalytic
or triformal functions to that applied already to bianalytic functions. In particular, we
shall call trianalytic functions that are in the image of jo3 trianalytic constants.

Definition 1.2. Let S C Oy, be a subsheaf in the category of sets. We shall call S a
Schwarz (respectively, pre-Schwarz) structure on U8 if étale locally on U (i.e., for some
étale cover V. — U), S has the following form: there exists some biformal uniformizer
z € I'(V,S) such that for every étale W — V, and every section f € I'(W,Op,), then
f e T (W,S) if and only if (respectively, implies that) f can be written étale locally (on W)
in the form (az +b)/(cz + d), where a, b, ¢, d are biformal constants and d is invertible.

It is clear that if S C Oy, is a pre-Schwarz structure on U log then S is contained in a
unique Schwarz structure §* C Op,,; on U 1o which we refer to as the Schwarz structure

associated to S. If S is a Schwarz structure, then we shall denote by $* C S (respectively,

L) the subsheaf consisting locally of functions of the form (az+b)/(cz+d), where: (1) z is
a b

a biformal uniformizer belonging to S; (2) d is invertible; and (3) is an invertible
c d

matrix of biformal constants (respectively, b = 0). We let Ls = Ls(\S*. Thus 8%, Ls,
and Lg are all pre-Schwarz structures. We shall call L§ (respectively, Lg) the sheaf of
biformal uniformizers (respectively, pseudo-uniformizers) of S.

Let G — U be the group scheme PGL,, and let B C G be the subgroup scheme which
is the standard Borel subgroup of PGLs, i.e., the image of the lower triangular matrices.
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First Properties of Schwarz Structures

Proposition 1.3. The subsheaf L5 C S consisting of biformal uniformizers of S forms a
B-torsor Bs — U.

Proof. This follows immediately from the definition of a Schwarz structure. The action of
a 0

(where a, ¢, d
c d

are biformal constants, and a, d are invertible) the biformal uniformizer az/(cz +d). O

B is given by associating to a biformal uniformizer z and a matrix <

Note that every B-torsor T — U naturally defines a P!'-bundle with a given section (by
taking the quotient of P! x T modulo the diagonal action of B, where B acts on P! by
means of affine transformations that fix zero; the section is the image of the zero section
of P!). We shall refer to the P!'-bundle Ps — U associated to Bs — U as the Pl-bundle
associated to the Schwarz structure S. We denote by os : U — Ps the natural section
(arising from the fact that the structure group is B rather than G).

Proposition 1.4. Let S be a Schwarz structure on U'°8. Then Ps = P(J/JB), and
05Tps U = (J )T =~ Tyios sglos - In particular, if U — S is proper, then the height of
os with respect to Tpg jyy is —deg(wyios g0z ).

Proof.  One sees by construction (e.g., by writing out transition functions) that the sheaf of
nonzero relative rational functions of relative degree one (as in [EGA 1V], §20) for Ps — U
that vanish at o is naturally isomorphic to L5. Thus, by considering Taylor expansions
out to second order terms, we get an isomorphism Op,(—0s)/Ops(—30s) = J/TB! (here
we use that p is odd). On the other hand, by multiplying and then taking the residue at
o, we obtain a natural duality between Op,(—0s)/Ops(—30s) and m.wp, /7(30s), where
7w : Ps — U is the natural projection. Also, note that via this duality, the filtration induced
by m.wps /v (20s) € Twpg v (30s) on Ops(—0s)/Ops(—30s) is the filtration defined by
the submodule Op,(—20s)/Ops(—30s). Since Ps is clearly naturally isomorphic to the
projectivization of T.wpg /7 (30s), we thus obtain the result. O

Crystalline Schwarz Structures and Monodromy

Let S be a Schwarz structure on U'°2. We would like to associate to S a subsheaf (in
the category of sets) of O{jm which we shall call §15 as follows. We work locally. Thus,
we assume that there exists a biformal uniformizer z € I'(U,S). We consider the triformal
function z15 defined by ji2(z), where ji2 is the natural map Oﬁbi — Oﬁtr given by inclusion
on the first two factors. Then we let S5 be the sheaf of all functions which étale locally
can be written in the form (azi2 + b)/(cz12 + d), where a,b,c,d are triformal constants

and d is invertible. Note that the definition of S15 does not depend on the choice of z,
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so everything glues together, and we obtain the subsheaf Si5 of (917tr over our original U.
On the other hand, we also have a subsheaf S13 of O&\“ defined in the same way as Sio,

except with the roles of 2 and 3 reversed.

Definition 1.5. We shall say that the Schwarz structure § is a crystalline Schwarz
structure on U8 if the two subsheaves Sy and S;3 of (’)LA{tr coincide. Let § be a crystalline
Schwarz structure on U'°8. Then we shall say that S has nilpotent monodromy if for every
marked point s : T — V (with V' — U étale), there exists a biformal uniformizer z € S(V)
and a section a € wyos/gi0s(V) such that the image of (dz) — ir(a) (where “d” is the

exterior derivative on the right) in Oﬁbi R0y § Wyries /glos 18 zZ€TO.

Remark. Of course, one may also phrase the definition of a crystalline Schwarz structure
as follows. First, note that Oi{\bi’ together with its right-hand sided Oy-algebra structure
and standard logarithmic connection, forms a quasi-coherent crystal of algebras A on the
crystalline site of U8 /S'°8, Then a crystalline Schwarz structure is a subsheaf of the sheaf
A on the crystalline site of U8 / S1°8 satisfying certain properties. Since this point of view
is only formally different from the point of view of Definition 1.5, we shall use these two
points of view interchangeably in what follows.

Let us suppose that S is a Schwarz structure on U8, Let H C G be the open
a b

subscheme consisting of matrices of the form , where d is invertible. Note that
c d

H is stable under the action by B from the right. Thus, we can take the quotient of
H xy Bs (by the diagonal action of B) to obtain a fiber bundle Hs — U with fibers
locally isomorphic to H — U. Similarly, we also obtain a G-torsor Gs — U. It now
follows immediately from the definitions that the sheaf defined on the étale site of U by
Hgs is naturally isomorphic to §*. Thus, if we assume that the Schwarz structure S
is crystalline, we see that we get a natural isomorphism between the two pull-backs of
Hg — U via iy,,ig : Oy — Oﬁbi’ i.e., we get a logarithmic connection Vg, on Hs — U.
By basic facts about fiber bundles, this gives a logarithmic connection Vg, on Gs — U and
a logarithmic connection Vpg on Ps — U, as well. Thus, in summary, to every crystalline
Schwarz structure S, we have associated a natural P!-bundle with section and logarithmic
connection (Ps — Uj;os : U — Ps;Vpg). Moreover, it follows from the definition of
the connection Vp, that by differentiating os by means of Vp., we get an isomorphism
Tyreg /glos = 05Tpg /v, Which is called the Kodaira-Spencer morphism. Indeed, to see that
this morphism is, indeed, an isomorphism, it suffices to realize that if, locally on U, one

takes a biformal uniformizer z, the difference ji2(z) — j13(2) generates jas(J )Oatr.

In addition to the fact that the Kodaira-Spencer morphism is an isomorphism, the
logarithmic connection V p, has another special property: If S has nilpotent monodromy,
then we can make more explicit the way in which this monodromy acts. Indeed, let
us recall from [Kato], §6, that if s : § — U is any marked point, then there exists a
unique subsheaf M of (Oabi@)@ws—l Og)/Og which is isomorphic to Og and annihilated
by the monodromy operator of the standard logarithmic connection on Oﬁbi‘ (Locally,
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this subsheaf is generated by log(1 — §), where § = 1 — (%), and t is a local generator of

the ideal defining s.) This subsheaf M, thus defines a section ¢, : S — P(J/JP!) that
lies over s. Then it follows from these observations, plus Proposition 1.4, that

Proposition 1.6. If S is a crystalline Schwarz structure on U'Y% with nilpotent mon-
odromy, then under the isomorphism Ps = P(J/JB) of Proposition 1.4, q, is fived by
the monodromy action on Ps = P(J/JB)) at s.

Correspondence with P'-bundles

So far, from a crystalline Schwarz structure, we have constructed a P!'-bundle with
section and logarithmic connection (satisfying certain properties). We can go the other
way, as well. Suppose we are given a P!-bundle with section and logarithmic connection
(mr: P — U;o : U — P;Vp) such that the Kodaira-Spencer morphism obtained by
differentiating o via Vp gives an isomorphism Tiies /g10s = 0*7p,7. Let P and P® denote
the pull-backs of 7 : P — U via ip,, i : Oy — Oa\bi, respectively. Then the connection Vp
defines an Oabi—linear isomorphism = : P* = PR, Thus, we have a commutative diagram:

pL =, pR

L

ybi i
Let ol (respectively, o) denote the result of base-changing o via i1, (respectively, iR).
Then by applying (o™)*, we can pull-back functions on P" to biformal functions on U'°8.
Let R denote the étale sheaf of degree < 1 relative rational functions (as in [EGA IV],
§20) on P relative to m : P — U (i.e., the divisor of poles is flat of degree < 1 over U)
that are regular in a neighborhood of the image of . Let a® : PR — P denote the
natural projection. Then it is easy to see that 2~ (a®)"!(R) defines a sheaf of functions
on P that are regular in a neighborhood of Im(co%), so we can consider the subsheaf S
of biformal functions on U'°® which is the image of (o%)7!Z7!(a®)"!(R). One checks
immediately that S defines a Schwarz structure, and, moreover, that since the connection
Vp is necessarily integrable (since the dimension of U over S is one), S is automatically
crystalline. Thus, in summary, we have the crystalline analogue of Theorem 2 of [Gunning]:

Theorem 1.7. If f : U — S is as above, then there is a natural one-to-one correspondence
between crystalline Schwarz structures on U8 and isomorphism classes of P'-bundles with
section and logarithmic connection (7 : P — U;o : U — P;Vp) on U8 whose associated
Kodaira-Spencer morphism is an isomorphism. Moreover, under this correspondence, the
crystalline Schwarz structures with nilpotent monodromy correpond precisely to the triples
such that ¥V p has nilpotent monodromy at the marked points.
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Proof. We have already defined maps going in either direction. Thus, it suffices to see
that these maps are inverse to each other. Now it is easy to see that if we start with
a P'-bundle with section and logarithmic connection as above, construct the associated
crystalline Schwarz structure S, and then from that the associated P!-bundle Ps with
section os and logarithmic connection V p., then we get back our original data. Thus, it
suffices to show that the map that associates a P!-bundle with section and connection to
a crystalline Schwarz structure is injective.

Let S and S’ be crystalline Schwarz structures on U'°8. Suppose that we are given
a horizontal isomorphism a between Ps and Ps/ that takes os to ogs/. Then « induces
an isomorphism ap of the B-torsors Bs and Bs/. Let A be the Oy-algebra (’)ﬁbi via

the morphism ig. Since as sheaves with B-action, Bs = L§ and Bs/ = Lj,, we get an
isomorphism g, : L§ — LZ,, which, by mapping a biformal uniformizer z € T'(U, L§)
(where U — X is étale) to the biformal uniformizer ar (z) € T'(U, Lg,) C T'(U, A), defines
an automorphism a4 of the PD-Oy-algebra A that preserves the augmentation p : A —
Oy. Moreover, it follows from the horizontality of o that « 4 is horizontal with respect
to the standard logarithmic connection on 4. On the other hand, it is immediate that A
does admit any nontrivial horizontal automorphisms (as a PD-Oy-algebra) that preserve
i. Thus, a4 is the identity, and hence, S and S’ must be the same subsheaf of A. This
completes the proof of the first statement. The last statement follows directly from the

definitions. ()
Schwarz Structures and Square Differentials

We would like to use Theorem 1.7 to exhibit the space of Schwarz structures as a
torsor over the square differentials. Let m: P — U be a P!'-bundle. Then we shall denote
by Ad(P) the vector bundle on U (of rank three with trivial determinant) given by m.7p,¢ .
When we consider marked points, it is not enough just to deal with P'-bundles; we must
deal with P!-bundles equipped with parabolic structures, as in [Sesh]. Thus, if our divisor
D of marked points is given by sections p1,...,p, : S — U, we make the following

Definition 1.8. A P'-bundle with parabolic structure on U'°8 is defined to be a P'-bundle
m : P — U, together with sections ¢; : S — P lying over p;. A rank two vector bundle
with parabolic structure on U'% is a rank two vector bundle &, together with a parabolic
structure on P(E).

Let (1 : P — U;qi,...,q) be a Pl-bundle with parabolic structure on U8, Then
we define the subsheaf Ad?(P) C Ad(P) to be the sheaf of sections that vanish at the
gi’s. We define Ad°(P) C Ad?(P) to be the subsheaf of sections that vanish to second
order (in the relative coordinate for ) at the ¢;’s. Suppose that we are given a section
o : U — P that avoids all the ¢;. Let L = o*wp;y. Then Ad(P) gets a filtration
0= F?(Ad(P)) € F'(Ad(P)) € F’(Ad(P)) € F~*(Ad(P)) = Ad(P) given by considering
sections of 7p/; that vanish to first or second order at o. Thus, for Ad(P), we have:
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Fler; FO/F'=0y; F7UFO= L7}

This filtration induces filtrations on Ad?(P) and Ad°(P). The subquotients are easily seen
to be the following: For Ad?(P), we have:

Ft>r(-D); FO/F' =2 0Oy; F1/F'= 7!

For Ad®(P), we have:

F'>~[r(-D); F°/F' 2 Oy(-D); F'/F° = 7!

Often, £ = wlg;gs. Thus, for computational purposes, it is convenient to note that

wg);gs(—D) is none other than the relative dualizing sheaf of the morphism f: U — S.
Now let us assume that 7 : P — U is given by P(J/J¥), with the section o given
by J/J Bl g /T 2l and the ¢; given by the sections “g,” defined in the paragraph
preceding Proposition 1.6. Let Vp be a logarithmic connection whose Kodaira-Spencer
morphism at o is the identity and whose monodromy at the marked points is nilpotent
and fixes the ¢;. (It is not difficult to see that such Vp always exist étale locally on U.)
Then any other such logarithmic connection V/, on P — U is given by adding to Vp a

section of FO(Ad®(P)) ®o, wg’/gs. On the other hand, the quadruples (7;0;¢;; Vp) and
(m;0;¢i; V') are isomorphic if and only if V/, can be obtained from Vp by applying an
automorphism « of (7;0; ¢;) that preserves the conormal bundle to o (since both Kodaira-
Spencer morphisms are the identity). Such an automorphism « is given by a section
of F1(Ad?(P)). The effect of such an automorphism « on the connection Vp is given
by adding to Vp the section of Ad°(P) ®o,, w%?/gs obtained by applying the morphism
Ad(Vp) : F1(AdY(P)) — F°Ad°(P)) ®o, wg’}g’s (induced by the connection Vp) to
a. Thus, we obtain that the set of isomorphism classes of quadruples (7;0;q;;Vp) that,
relative to the bijection of Theorem 1.7, correspond to crystalline Schwarz structures with
nilpotent monodromy are a torsor over the cokernel of Ad(Vp). On the other hand, by
looking at the explicit representations of the subquotients of the filtrations on Ad?(P) and
Ad®(P) (given in the preceding paragraph), and using the fact that the Kodaira-Spencer
morphism for Vp at ¢ is an isomorphism, we obtain that

Coker(Ad(Vp)) = (wfs)®*(=D)

(We remark that here one uses the fact that p is odd, for when one computes Ad(V p) from
V p, certain factors of 2 appear, and in order to get the above isomorphism, one needs for
those factors of 2 to be invertible.)

In other words, we have proven the following result:
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Theorem 1.9. The étale sheaf of crystalline Schwarz structures on U'% with nilpotent

monodromy is naturally a torsor over the sheaf (wg’%)@z(—D).

Normalized P!-bundles with Connection

Let us consider the P'-bundle 7 : P = P(J/JB) — U, and section ¢ : U — P
given by J/JB — 7/TB, without any connection. Now, just as in the proof of Propo-
sition 1.4, by taking residues, we obtain a natural duality between Op(—0)/Op(—30)
and m,wp,y(30) that respects the natural filtrations on the two bundles. Let Q =
P((J/JBY). As U-schemes, we may identify @ and P. Let Og(1) denote the line
bundle obtained from the definition of the projectivization; thus 7,0q(1) = (J/JBHV.
Let £ = m.{Oq(1)®0,, 7p/r(—30)}. Then L is a line bundle on U and (J /T = L&o,,
m.wp/v(30). Thus, we obtain a natural isomorphism Op(—0c)/Op(—30) = (T /T ®e, L
that respects filtrations. If we then look at the quotients of both sides by their respective
rank one subbundles (that make up the filtrations), we obtain an isomorphism between
wg)/gs >~ Op(—0)/O0p(—20) = (T /T ® L = w%})/gs ® L. That is, we get a natural trivial-
ization Oy = L of L. In summary, we see that without any connection, we have constructed
a natural filtration-preserving isomorphism:

7 Op(~0)/Op(~30) = T/ T

Now let us suppose that we have a logarithmic connection Vp on m whose Kodaira-
Spencer morphism at o is an isomorphism. Then we get a commutative diagram like the
one preceding Theorem 1.7. Pulling back by o, then =, and finally by o", we thus see
that Vp induces an isomorphism:

((Vp): Op(—0)/Op(~30) = T /TP

Now we saw above (Theorem 1.7) that V p defines a Schwarz structure. But one “loose
end” relative to the statement of Theorem 1.7 is that although Schwarz structures have no
automorphisms, triples consisting of projective bundles with a section and a connection can
have automorphisms. These automorphisms were the cause of the phenomenon (observed
just before the statement of Theorem 1.9) that many different V p can give rise to the same
Schwarz structure. Thus, it is convenient to have some sort of notion of a “normalized
Vp” such that each Schwarz structure arises from a unique normalized Vp. We choose
the normalization as follows:

Definition 1.10. We say that Vp is normalized if v and ((Vp) are inverse to each
other.

Now as a formal consequence of this definition, we observe that we obtain the following
normalized version of Theorem 1.7:
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Theorem 1.11. If f : U — S is as above, then there is a natural one-to-one correspon-
dence between crystalline Schwarz structures on U8 and normalized logarithmic connec-
tions on the P'-bundle m : P(J/JTB) — U whose associated Kodaira-Spencer morphism
at the section o : U — P (defined by J /TP — J/TP) is an isomorphism. Moreover,
under this correspondence, the crystalline Schwarz structures with nilpotent monodromy
correpond precisely to the triples such that ¥V p has nilpotent monodromy at the marked
points.

The Schwarzian Derivative

Before proceeding, it is interesting to note that, as the name suggests, a crystalline
Schwarz structure S allows one to define a Schwarzian derivative ds, as follows. Let
wélog /o C wyes /gios denote the subsheaf consisting of sections that locally generate

Wries / g1z as an Op-module. Let Oﬁ C Oy be the subsheaf consisting of functions ¢ such
that d¢ is a section of wélog /glo C wyos/g10g. Then our Schwarzian derivative will be a
morphism of sheaves of sets:

ds : (’)# — wgig/slog
Let 0 be a section of (’)# over some étale V — U. Let us denote by jo € J/JB(V) the 2-
jet of @ (i.e., the Taylor expansion out to second order, modulo the constant term). By the
definition of O#, the image of jg in J/J? (V) is a local generator of the sheaf 7 /7. By
Proposition 1.6, jy then defines a section sy : V' — Ps. Taking the Kodaira-Spencer map
of this section then defines an Oy -linear morphism from 7ii0g /g10s to the conormal bundle

to sg, which is simply wgjeg /g10e. This Oy-linear morphism is thus given by multiplication

®2

[rlos /Stos which we take to be ds(#). A simple calculation reveals that

by a section of w

Proposition 1.12. If (as in Theorem 1.9) one modifies the Schwarz structure S by
adding the square differential § € [(w%?/gs)@(—D)](U) to obtain a Schwarz structure S',
then ds(@) = dsl(g) + 0.

We also have a biformal version of the Schwarzian derivative. Namely, we let Ogbi be
the subsheaf of Oﬁbi consisting of biformal functions ¢ that are of the form u + ¢, where u
is a biformal uniformizer, and c is a biformal constant. Then we get a morphism of sheaves
of sets:

bi . # ®2 Lo def @2
8 OF, = (Fgue)” & s B0 O

defined as follows: If 0 is a section of Ogbi over some étale V. — U, we let jg be the

section of j/jm ®o, Or

2 which is the 2-jet of 6. Thus, jy defines a section of sg of PL

40



whose Kodaira-Spencer map is given by multiplication by a section of (wgﬁ,g / Slog)L, which

we take as d2(0). Note that d(ir,(0)) = iL(ds(#)), and that if we modify the Schwarz
structure by adding a square differential §, then

dg(0) = dg () +1iv(6)

Remark. In the Appendix to this Chapter, we show that the definition just given for the
Schwarzian derivative coincides with one-half the classical Schwarzian derivative, when U
is the projective line.

For the biformal version of the Schwarzian, we have an analogue of the classical
result that the Schwarzian vanishes exactly on the formal functions that make up the
projective structure of a Riemann surface. Indeed, let = : Pg: — PSR be the isomorphism

defined by the connection Vpg; let ot : PSR — Ps be the natural projection; and let

¢: b Spec(@abi) — Ps be the morphism obtained by composing o% : Uuri — PL with

= and then . Since the definition of dg is functorial, ds applied to a function pulled back
by ¢ is (71 of the “ds” computed for projective bundles in the Appendix, i.e., one-half the
classical Schwarzian. Thus, if 6 is a section of S, then @ is the pull-back by ¢ of a (degree
< 1) relative rational function for Ps — U, so d2%(6) = 0.

Conversely, suppose that d%(f) = 0. Then the statement that d2(f) = 0 means
that sg is a horizontal section of Pfg . Thus it follows from the definition of a connection,
together with the Poincaré Lemma in crystalline cohomology (see, e.g., [Kato], §6 for the
log version) that Z(sg) is the pull-back via o™ of a section tg of Ps. Now (after possible
étale localization), we can find a (degree < 1) relative rational function ¢ for Ps — U

whose 2-jet at os is given by the section ty. Since ( maps the diagonal in UP to JE, and

the formation of 2-jets is functorial, it thus follows that the 2-jet of 1 def (~Y(¢) defines

a section s, of Pé which is equal to sy when restricted to the diagonal U C P, But
since both s, and sg are horizontal, they must be equal. The biformal functions ¢ and
6 thus have 2-jets that define the same “line” in J/J. Let z be a local coordinate on
U. Let us denote by successive primes the derivatives of biformal functions (i.e., taken on
the left) with respect to z. Then we obtain that ¢’ and ¢’ are both invertible biformal
functions such that ¢” - 8’ =’ - §”. 1t thus follows that (¢'/6') =0, so ' = a ¢’, where
a is an invertible biformal constant. Thus, § = a ¥ + b, where b is a biformal constant.
Since, by construction ¢ € S(V'), it follows that § € S(V'). Thus, we obtain the following
“crystalline Schwarzian Poincaré Lemma.:”

Theorem 1.13. If 0 is a biformal function, then d%(0) = 0 if and only if 0 is a section
of S.
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§2. Indigenous Bundles

In this Section, we globalize the local considerations of §1, and are thus led to introduce
“indigenous bundles” (as in [Gunning]). Let S°¢ be a fine log scheme, whose underlying
scheme is connected noetherian. Let f1°8 : X8 — §l°2 he proper, geometrically connected,
and locally stable of dimension one. (Note that the first two conditions are actually
conditions on the underlying scheme morphism f.) We assume that the fibersof f : X — S
have arithmetic genus g > 0, and exactly » > 0 marked points (as in Definition 1.1 — note
that these may only be defined étale locally, however).

Basic Definitions and Examples

If 29 — 2+ 7 > 1, then let M, be the moduli stack of stable curves of genus g,
with r marked points, over Z, and let ¢ : C — M, be the universal curve, with its r
marked points sq,...,s, : My, — C. Note that M, , has a natural log structure given

by the divisor at infinity. Denote the resulting log stack M go’i. Also, by taking the divisor

which is union of the s; and the pull-back of the divisor at infinity of M, ., we get a log

structure on C; we call the resulting log stack C'°&. Also, ¢ : C — M, extends naturally

: ——1
to a morphism of log stacks ('8 : Clo8 — M gof.

Definition 2.1. We shall say that f°% : X°8 — S8 is stable if there exists a classifying
morphism ¢'°8 : S8 — M;E such that X'08 2 Slos X o Clos,
g,r

Ultimately, we shall be concerned mainly with the case where f'°8 is stable, but it is useful
to realize that the definition, as well as many of the first properties, of indigenous bundles
can be made without these assumptions.

Let 7: P — X be a P'-bundle. If 0 : X — P is a section, then we call the canonical
height of o the number %degX/S(U*Tp/X), where degy /g denotes the relative degree over S
of a line bundle on X, and 7p,x is the relative tangent bundle of . If Vp is a logarithmic
connection on P, then we call the morphism 7xios/g10s — 0*7p,x given by differentiating
o by means of Vp the Kodaira-Spencer morphism at o relative to Vp. Often, instead of
dealing with P'-bundles with logarithmic connections, it will be more convenient to deal
vector bundles: Thus, let £ be a vector bundle equipped with a logarithmic connection
Ve, whose rank is two and whose determinant is trivial. Then Theorem 1.7 motivates the
following

Definition 2.2. We shall say that (7 : P — X, Vp) is an indigenous bundle on X'°8 if
the monodromy at the marked points (which exist étale locally) is nilpotent, and there
exists a section 0 : X — P of 7 such that the Kodaira-Spencer morphism at o with
respect to Vp is an isomorphism. We shall say that (£, V¢) is an indigenous vector bundle
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on X'°¢ if the associated P*-bundle with logarithmic connection (P(€) — X, Vp(g)) is an
indigenous P1-bundle. We shall say that P — X (respectively, &) is intrinsic if there exists
a logarithmic connection Vp (respectively, Vg) on P — X (respectively, £) that makes
(P — X,Vp) (respectively, (£,V¢)) indigenous. We shall say that P — X (respectively,
£) is locally intrinsic if it is intrinsic étale locally on S.

Thus, in the vector bundle case, (€, V¢) is indigenous if V¢ has nilpotent monodromy
at the marked points, and there exists a rank one subbundle F°(£) C & such that the
Kodaira-Spencer morphism FO(€) — wyios/s10s @0y (E/FY(E)) (induced by V) is an
isomorphism.

So far we have been discussing the hyperbolic case (29 — 2+ r > 1); however, one can
make the same definition for curves that are not hyperbolic.

Example 1. Suppose that f : X — § is smooth, with no marked points, and that
g =0. Thus, f is a P'-bundle. Then the P!'-bundle given by X xg X — X has a natural
trivial connection, together with a natural section, the diagonal section. It is trivial to see
that this triple satisfies the required properties for an indigenous bundle.

Example 2. Suppose that f1°8 : X1°8 — §l°¢ has no marked points, and that its fibers
all have arithmetic genus one. Then consider the bundle £ = wx,g ® Ox (where wx/g
is the relative dualizing sheaf). Let £ = f.wx/g. Thus, £ is a line bundle on S, and
J*L = wx/g. In particular, there exists on wx,g a “trivial connection” V,, obtained from
tensoring the trivial connection on Ox with f*L. Let V. be the connection on £ which
is the direct sum of V, and the trivial connection on Ox. Let Vg be the connection on
& given by adding to V% the section of End(£) ® wx,g given by projecting & — wy, g =
(0,0x) ®wx/g € € ®wx,g. Then one checks easily that if we take (P,Vp) = P(€,Vg),
and 0 : X — P to be given by (wx/s,0) C &, then we obtain an indigenous bundle on
Xlog‘

Example 3.  Let S'°¢ = Spec(Z) (with the trivial log structure); X'°& = M ; (the
moduli stack of one-pointed curves of genus one over Z), with its natural log structure.
Let £ be the vector bundle of rank two on X which is the first de Rham cohomology
module of the universal one-pointed curve of genus one. Then £ has a natural logarithmic

connection Vg, the so-called “Gauss-Manin connection.” There is also a natural Hodge

filtration F1(£) C &, which defines a section o : X — P o P(&). The pair (€, V¢) forms

the prototypical example of an indigenous bundle on X8,
First Properties

We now proceed to examine basic properties of such bundles.
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Proposition 2.3. If flo& : X8 — Glog gngd plog . Ylos — Slo8 gre as stipulated at the
beginning of the Section, and ('°% : Y1°8 — X198 s q log étale morphism of log schemes
over S'°% that sends marked points to marked points, then the pull-back via ('°% of any
ndigenous bundle is again indigenous.

Proof. This follows from the definitions. ()

Proposition 2.4. If 7w : P — X is intrinsic, then the section o : X — P 1is of canonical
height 1 — g — %T. If X'°8 — S8 js q stable curve (so, in particular, 2g — 2 +1r > 1),
then o is the unique section of ™ of canonical height 1 — g — Lr. We shall refer to o as the

2
Hodge section of m: P — X.

Proof. The fact that the canonical height of 0 is 1 — g — %r follows from the fact that the
Kodaira-Spencer morphism is an isomorphism. Now suppose that X8 — S'°2 ig stable.
Let us first assume that S is the spectrum of an algebraically closed field. Suppose that
o’ : X — P also has canonical height 1—g— %r. Then it follows that its restriction to some
irreducible component of X has negative canonical height. Since the restriction of o*7p, x
to any irreducible component has negative degree, it follows immediately from considering
intersection numbers on P, together with the definition of “canonical height,” that there
cannot exist two distinct sections of negative canonical height over that irreducible com-
ponent. Thus, o and ¢’ must agree over that irreducible component. Now if there are
any other irreducible components in X, then ¢’ must have negative canonical height over
some other irreducible component of X, in order for its canonical height over all of X to
bel—g— %r. Thus, repeating this argument shows that ¢ = ¢’. Finally, let us observe
that the space of deformations of o is given by H°(X, 0*Tp/x ), which is zero, since 0" 7p, x
has negative degree on every irreducible component of X. The result for general S then
follows immediately from this by deformation theory. ()

Now let us assume for the rest of the Section (unless stated otherwise) that there
exists an odd prime p which is nilpotent on S, together with a PD-ideal Z C Og.

Proposition 2.5. If 7 : P — X is intrinsic, then P = P(J/JB)) (where J defines the
diagonal in XP'). Moreover, for any connection on 7 that makes it indigenous, the mon-
odromy at a marked point s : S — X fizes the section q, : S — P(J /TP of Proposition
1.6.

Proof. This follows from Theorem 1.7 and Propositions 1.3 and 1.6. Note that the second
statement uses the fact that p is odd.()

Proposition 2.6. Suppose that the number of marked point plus nodes on any geometric
irreducible component of a fiber of X — S is even. Let (w: P — X,V p) be indigenous on
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X8, Then étale locally on S, there exists an indigenous vector bundle (£,Vg) on X'°8
whose projectivization is (m : P — X,V p). Moreover, such an (£,Vg) is unique up to
tensor product with a line bundle with connection (L,V ) on X whose square is trivial.

Proof. Consider the relative anticanonical bundle 7p,x on P. By Proposition 2.5, (after
étale localization on S) there exists a line bundle G on P whose square is 7p/x. Now
let us note that since the construction of the anticanonical bundle is canonical, it follows
that the connection Vp on the P!-bundle induces a connection on the polarized P'-bundle
(r: P — X,7p/x). Moreover, since the “moduli space” of line bundles G whose square
is Tp/x is étale over X, it follows that the connection Vp on the P'-bundle 7 : P — X
in fact induces a connection on the polarized Pl-bundle (7 : P — X,G). Thus, we

get a connection Vg on &£ def m+G. Moreover, on P, we have a natural exact sequence
0 — wp/x — (7€) ® Gt — Op — 0, which induces an isomorphism det(r*&) = Op,
hence an isomorphism det(€) = Ox, which is easily seen to be horizontal. Finally, it is
clear that the projectivization of (£, V¢) is isomorphic to (7 : P — X, Vp).

Now suppose that both (£,V¢) and (€, V) have the same projectivization (7 : P —
X,Vp). Then £ defines a line bundle G on P whose square is 7p,x and such that Vp
induces a connection on the polarized P-bundle (7 : P — X, G). Similarly, £ defines a line
bundle G’ on P. Since we have horizontal isomorphisms G¥* & 7p,x and (G')®? = 7p, x,
it follows that if we let £ = 7, ((G’) "' ®G), then L gets a natural connection V such that
the square of (£, V) is trivial. Moreover, (£,Ve) = (£/,Ve) ® (L£,V ). This completes
the proof. O

In summary, the above Proposition tells us that (under the evenness assumption) up to
étale localization on the base, it is essentially the same thing to give an indigenous P!-
bundle or an indigenous vector bundle. Thus, in the future, we shall frequently simply
speak of “indigenous bundles.” The same goes for intrinsic bundles.

Existence and de Rham Cohomology

The next step is to prove the existence of indigenous bundles, and to parametrize
them. We begin with the proof of existence. For the rest of this Section, we shall assume
that f1°8 is stable. Thus, in particular, 29 — 2+ r > 1.

Theorem 2.7. For any r-pointed stable curve X'°& — 5198 of genus g, the P'-bundle
P(J /T8 is locally intrinsic.

Proof. From Theorem 1.9, we know that the obstruction to the existence of a crystalline
Schwarz structure with nilpotent monodromy on X'°¢ (locally on ) is given by a section

of R'f, (wl)?‘(/gs)@Q(—D) over S. On the other hand, by Serre duality, R!f, (wl)?fs)@(—D)
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is isomorphic to the dual of fi7Txios/g10s = 0, since the curve is stable. The Theorem now
follows form Proposition 1.6 and Theorem 1.7. O

Next we wish to compute the de Rham cohomology of the P!-bundle with parabolic
structure (m;¢;). Note that the exterior differential operator maps Ad(P) (respectively,
Ad?(P)) into Ad?(P) (respectively, Ad°(P)). We define the parabolic de Rham cohomology
(respectively, with compact supports) of Ad(P) to be the hypercohomology of the complex

Ad(P) — AdY(P) ® wl)?% (respectively, Ad?(P) — Ad°(P) ® wl;%).

Theorem 2.8. Let (P,Vp) be an indigenous bundle on an r-pointed stable curve f1°& :
Xlog — Glog of genus g. Then the de Rham cohomology of Ad(P) with its natural connec-
tion (induced by Vp) is as follows:

(1) For cohomology without compact supports, we have (fpr)«(Ad(P)) =
R2(fpr)«(Ad(P)) = 0; and we have a natural ezact sequence

0— f*(wl)(;%s)@(—D) — R'(fpr)«(Ad(P)) — R fuTx100 /5106 — 0

(2) For cohomology with compact supports, we have (for all i > 0) a natural
isomorphism

R'(for)e,«(Ad(P)) 2= RY(fpr)+(Ad(P))

In particular, (P;V p) has no nontrivial automorphisms.

Proof. 'To compute the de Rham cohomology, one uses the long exact cohomology se-
quences induced by the filtrations considered above, plus the fact that the Kodaira-Spencer
morphism is an isomorphism. Now let a be an automorphism. Since (fpr)«(Ad(P)) =0,
all infinitesimal automorphisms must vanish, so we may work over an algebraically closed
field. By passing to a tamely ramified covering of X ramified only at the marked points
and nodes, we may assume that the hypotheses of Proposition 2.6 are satisfied. Then let
L be a line bundle on P whose square is 7p,x. Since L= Op(0) ®os M (for a line bundle
M on S), and « always preserves o, it follows that a preserves £. Thus, « arises from a
horizontal section of End(7,.L) = Ox @ Ad(P), hence is induced by multiplying 7, L by a
section of Og. Thus, « is the identity, as desired. ()

Finally, combining what we have done in this Section with Theorem 1.7, we obtain:

Corollary 2.9. Let flo8 . X8 — Glog pe an r-pointed stable curve of genus g. Then
the set of crystalline Schwarz structures on X with nilpotent monodromy is in one-to-one
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correspondence the set of isomorphism classes of indigenous P'-bundles on X'°%. More-
over, the functor that assigns to T'°% — S8 the set of crystalline Schwarz structures with

nilpotent monodromy on X;?g = X108 x qi0 TI98 s q torsor over f, (w};%)m(—D).

Indigenous Bundles of Restrictable Type

Let fl-log : X;og — S8 (for i = 1,...,n) be an r;-pointed smooth curve of genus g;
(where 2g; — 2 +r; > 1 for all i). Suppose that we are given a graph I' consisting of n
vertices, numbered 1 through n. Let E; be the set of edges of the i'" vertex. Suppose
further that we are given an injection \; : E; — {1,...,7;}. Then we can glue together
the curves f,°% : X1°% — §1¢ to form an r-pointed stable curve f1°8 : X108 — 518 of genus
¢ in such a way that the dual graph of f°% is given by T, that is:

(1) vertex i corresponds to f;

log.
X'°8;

1 . .
¢ : X,°® — S'8 an irreducible component of

(2) if € is an edge running from vertex ¢ to vertex j such that \;(¢) = a
and \;(€) = b, then € corresponds to a node on X'°¢ obtained by gluing

together X.°® at the a*" marked point to X]l.Og at the b*" marked point;

(3) g and r can be computed combinatorially from I, the g;’s, the r;’s and
the \;’s.

Let ;°% : X1°® < X' he the inclusion of X% into X'°% as one of the irreducible

components.

Now let us suppose that we are given an indigenous bundle (7 : P — X;Vp) on X°8,
Then it is not necessarily the case that (,uiog)*(w : P — X;Vp) will be indigenous on Xiog.
The problem is that since in general, marked points of X ;Og might be sent to nodes of X108
(and not to marked points), there is no reason why the monodromy at such marked points

of X!°® should be nilpotent. We therefore make the following

Definition 2.10. If the (41,°%)*( : P — X;Vp) are indigenous on X,°% for all 4, then we

7

say that (7 : P — X;Vp) is of restrictable type.

Now let us suppose that we are given indigenous bundles II; = (m; : P, — X;;Vp,)
on X;Og . Note that for each marked point s : S — X, of an X;Og , s*P; has a canonical
trivialization as a P!-bundle given by considering:

(1) the Hodge section o; : X; — P; (pulled-back by s);
(2) the trivialization of s*(o;wp,,/x,) given by the residue map; and

(3) the section g5 : S — s*P; of Proposition 1.6.
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It thus follows that we can glue together the II;’s by means of this canonical trivialization
at the marked points to obtain an indigenous bundle II = (7 : P — X;Vp) on X8,
Moreover, by construction, II is of restrictable type.

Also, we can clearly reverse the procedure: Namely, if we start with an indigenous
bundle IT on X8 of restrictable type, we can reconstruct II by restricting to the X;Og s,
and then regluing, in the fashion described in the preceding paragraph. Now let us define

n

def
&= @ (fi)*w?;?og/slog(_Di)

=1

where D; is the divisor of marked points on X;. Then we have the following result:

Proposition 2.11. The étale sheaf on S of isomorphism classes of indigenous P'-bundles
of restrictable type on X'°% is a torsor over the vector bundle &.

Note that the rank of £ is given by > (3g; — 3 + r;), which, in general, is strictly less
than 3g — 3 +r.

§3. The Obstruction to Global Intrinsicity

In §2, we saw that the P'-bundle P(J/JP) is locally intrinsic on M, ,. In this
Section, we study the obstruction (which, in general, is nonzero) to it being globally
intrinsic over all of Mg,r. The main point is a computation in Hodge cohomology which,
in many respects, is similar to that of [Falt3], Lemma IV.4. Since, however, it is not
literally the same as [Falt3|, and certain technical aspects of the computation are different,
we provide a complete proof here.

Introduction of Cohomology Classes

We shall work over a field K of characteristic zero, say Q,, until we state otherwise.
Since we are only interested in certain intersection numbers, the base field is essentially
irrelevant. Let us consider the universal r-pointed stable curve of genus g, ( : C — ﬂg,r
(over K). We would like to consider various cohomology classes on C and M,,. The
cohomology theory that we will use is Hodge theory, so all cohomology classes are to be
understood as being Hodge-theoretic. Let m# : P = P(J/JB) — C be the P'-bundle
which, as we saw in §2, is locally intrinsic. Let F = Ad(P). Thus, F has a filtration whose
subquotients are given by:

Frte[; FO/F' = 0Oc; F71/FO= L7}
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where £ = Wetog /7q1° Let 7 = ¢1(L), the first Chern class of £. Then we have: ¢1(F) = 0.

On the other hand, the second Chern class of F is given by:

eo(F) = —n?

Let us compute (,n?. Let D; C C (where i = 1,...,7) be the marked points. Let
D = >""_ D;. We shall write [D;]; [D] for the respective cohomology classes on C. Let
& = cl(wc/ﬂgr). Thus, n = £ + [D]. Since different D;’s do not intersect, we have

[D;]-[D;] =0ifi+# j. Also, by “taking the residue,” we see that (. {(¢ + [D;]) - [D;]} =0,
for all i. Thus, ¢.{(£+ [D])-[D]} = 0. Let ¢; = C(&-[Ds]); ¥ = >i_ ¥i; 0 = (&2 Then

we obtain:

G* = G A€+ [D]) - €}
=6+

Now one knows from [AC]| that for g > 3, the restrictions of the classes 6 and ¢ to M, ,
are linearly independent. We summarize this in a Lemma:

Lemma 3.1. We have, on M., (,n? = 0 + 4. In particular, if g > 3, then (¢.n?)|m
1S NONZETO.

g,T

We shall see below that (.co(F) can be related to the obstruction to the existence of a
global indigenous bundle on C. Thus, once we have done this, we will have proven that
this obstruction is given by the relatively computable cohomology class —(.n? on M, .

Computation of the Second Chern Class

Let us first observe that P|p has a canonical trivialization as a Pl-bundle given by
using:

(1) the Hodge section o : C — P (restricted to D);
(2) the trivialization of (0*wp/c)|p given by the residue map; and

(3) the section g5 : D — P x¢ D of Proposition 1.6.

Let us denote by C°% the log stack obtained by letting C be the underlying stack and

: ——log .
taking for the log structure the pull-back of the log structure of M goﬁ via (. Thus, we have
an exact sequence on C:

0— F"Q—tog — Qotog ww.~ —0
¢ M cee C/Mg.r
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where the first two sheaves of differentials are over K. In the future, we shall think of this

exact sequence as defining a one-step filtration on ,0s. For 7,5 > 0, let us define for any
Oc-module G:

H(C,6) = H'(C,G ®o, N Qgee)

This cohomology is a sort of cohomology with compact supports outside D. Thus, by using
the canonical trivialization of P|p referred to above, we see that the global obstruction to
the existence of a logarithmic connection on 7 : P — C (for the log structure of C'°¢) which
has normalized nilpotent monodromy at D defines a class x € H}1(C,Ad(P)). Now, by
taking the trace of the square of x, we get a class in tr(x?) € H2?(C,O¢). If we then apply

Ce, we get a class (.tr(k?) € Hl’l(ﬂlog) ef HY(M, ., Q On the other hand, let us

g,r mlog ).
denote by:

g,m

Sgr — Mg

the leog -torsor defined by looking at the crystalline Schwarz structures with nilpotent

g7

monodromy on C (as in Corollary 2.9). This torsor thus defines a class ¥ € H Ll(ﬂl;i).

The goal of this subsection is to prove the following:

Lemma 3.2. We have the following equality of classes in Hl’l(ﬂ;%): Y= %C*tr(/-f).

Now let us note that H1'1(C,Ad(P)) has two one-step filtrations: one arising from
the Leray-Serre spectral sequence applied to (, and the other arising from the filtration
defined above on {,.s. Thinking in these terms, we see that we get a morphism:

oo + He' (C, Ad(P)) — HO (Mg, RUG(AA(P) @ we 37, )
Now since we know that P — C admits a connection of the desired type on the fibers of (,
it follows that ¢go(x) = 0.

Next let us consider the natural morphism:

¢10 - HY''(C, Ad(P)) — H'(C, Ad(P) ® we 57, )

Since ¢gp (k) = 0, it follows from considering the Leray-Serre spectral sequence that ¢1¢(k)
lies in HY(M, ., (Ad(P) ® we R, ) HYC,Ad(P) ® we 7, ). In fact, by consid-
ering only normalized connections (as in Definition 1.10), we can say more. Namely, it
follows that ¢10(k) is actually the image under the morphism H'(M, ., (. (w c[og/Mlog ®

We R, ) = HYM, ., ¢ (Ad(P) ® we 7, ) (induced by v Ad(P)) of the
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class 3 (regarded as a class in H'(M,,,, (. (wclog/ﬂlﬁ ® wc/ﬂw)) by means of the tauto-

logical isomorphism lego% =~ (, (wclog/mzo}% ® wc/mw)).

Now let us consider the natural morphism:

¢o1 : He''(C,Ad(P)) — H (Mg, R'((AA(P) © Qpox))

Since ¢go(k) = 0, it follows that the section ¢oi(x) of R'((Ad(P) ® Qpiox) lies in the
image of the natural map

t: R, (AA(P) ® Qﬂlﬁ ) = R'C(AA(P) @ Qe

In fact, we can say more. Since we are dealing with sheaves on ﬂg,r, we can compute
locally on Mgm- Let U — Mg,r be étale. Let Vp be a logarithmic connection with
normalized nilpotent monodromy (relative to (i : Cy — U) on Py = P xR, . U. Then the
obstruction to lifting V p to a logarithmic connection relative to Cyy — Spec(f( ) is giving by
subtracting the two pull backs of (Py — U; Vp) to the first infinitesimal neighborhood Ay,
of the diagonal of U x i U. Note that it only makes sense to compare these two pull-backs
because we have chosen a connection V p, so that we can deal with crystals on Crys(Cy /Av)
(where the structure morphism Cy — Ay is given by composing (y : Cy — U with the
diagonal embedding U < Ay). Thus, the difference between the pull-backs defines a
section 0 (over U) of Qo v @R (v )pr.«(Ad(P), Vp). Now if we compose the projection
g,r

R'(¢y)pr.«(Ad(P),Vp) — Rl(CU)*TCE)g/UIOg with J, we get a morphism

(gzie6) I = Ogos v — RI(Cw)Tetes o

Now it is a tautology that this morphism is none other than the isomorphism ( derived
log

g.r
of the relative tangent bundle of ¢'°8. Thus, in summary, we have proven the following

statement:

from deformation theory of the tangent space to M, with the first cohomology group

(*) locally on M., ¢10(k) is the image under ¢ of some local section
v of RI¢.(Ad(P) ® Qﬂloﬁi) whose image in R(, (TClog/ﬂgyr) ® szoi is

g
the tautological isomorphism (.

We are now ready to consider (,tr(k?). We begin by using the observations of the
preceding two paragraphs to compute what happens when we multiply various subquotients
of the two filtrations on H}'1(C, Ad(P)) by each other:

(1) If we multiply two elements in the image of H'(M, ., (. (Ad(P)) ®

leog), and take the trace, we get a (2,2)-Hodge cohomology class on

g,T
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C which is the pull-back of such a class on W%T; thus, if we apply (, to
such a product, we get zero.

(2) If we multiply an element in the image of H'(M, ., (.(Ad(P)) ® Q05 )
g,r

by an element in the image of H%(M, ., R1(,(Ad(P ))®Q—10g ), and take

the trace, we get a class in H' (M, ., R'(.Oc @ A2Q— 1og); since there

are no factors of w, S, in the wedge product, applylng C* again gives
ZEero.

(3) If we multiply two elements of H%(M, ., R'(,(Ad(P)) ® Qs ), we

get zero since ( has relative dimension one.

(4) If we multiply an element in the image of H' (M, ., (. (Ad(P))®@Q— 1og)

by ¢10(k) € HY (M, ¢ (Ad(P )®w0/ﬂg _)), and take the trace, we get
zero, since we are taking the trace of the product of a nilpotent section
of Ad(P) with a section of the same Borel subalgebra of Ad(P).

(5) If we square ¢10(x) € H (Mg, ¢ (Ad(P )®w0/ﬂg ), we get zero since
we are, in effect, squaring nilpotent sections of Ad(P).

(6) If we multiply d10(x) € H'(My.r G.(Ad(P) ® we g, ) by don(r) €
HY(Mg,, R (Ad(P) ® Q100 )), then we are, in effect, multiplying the
class X by the tautological isomorphism [, so that we obtain 3, regarded

as a class in H'(M,,,, Qpios ).
g,r

Thus, in summary, all of the possible contributions are zero, except for the last, which is
2%.. This completes the proof of Lemma 3.2. On the other hand, by basic linear algebra,
c2(Ad(P)) is —2 tr(k?), so we see that we have, in fact, proven the following:

Lemma 3.3. We have (.co(Ad(P)) = —4%.

Finally, putting this together with Lemma 3.1, we see that we have explicitly computed
the class ¥ in terms of well-known first Chern classes of line bundles:

Theorem 3.4. The torsor of Schwarz structures defines a class ¥ € H* (mgﬂn,Qﬂlog)
g,mr

which is equal to i(@ + 1), where 0 = (&2, Y = (€ [D]); € = (WC/MQ T); and [D]
15 the cohomology class of the divisor of marked points. In particular, if g 27 3, then (in
characteristic zero) Sy, — Mg, does not admit any sections, i.e., there are no canonical
Schwarz structures on r-pointed smooth curves of genus g > 3.

Remark. Ideally, it would be nice to have an equality of classes not in H 1(Mg,r, leog )
g,mr

but in some sort of cohomology with compact supports “H} (M, ., Q102 )7 (Which should
g,r
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be isomorphic to H* (M, ., ng _))- Inorder to do this, one would have to define some sort
of appropriate sense in which ¥ is compactly supported, i.e., one would have to define some
sort of trivializations of S, — M, , at infinity. In fact, S, , — M, , does not (in general)
have a canonical section over the divisor at infinity. However, by considering indigenous
bundles of restrictable type, one can show that, so to speak, “the more singular a curve gets,
the more of a canonical trivialization one has for gg,r — ﬂgm.” For instance, if the curve
is totally degenerate, i.e., it can be constructed by gluing together (as at the end of §2) a
number of copies of P! with three marked points, then gg,r — Hw does have a canonical
trivialization, as follows immediately from Proposition 2.11 (since then the indigenous
bundles of restrictable type form a torsor over the zero sheaf). Thus, in some sort of
combinatorially complicated sense, by considering indigenous bundles of restrictable type,
one can exhibit ¥ as a cohomology class with compact supports. Unfortunately, however,
the combinatorics involved get rather complicated in general, so we shall not carry this
out explicitly, except in the case when the dimension of ﬂg,»,. is one, where things are not
so difficult.

The Case of Dimension One

In this case, either g =7 =1 o0r g =0, r = 4. Let Do, C M, be the divisor at
infinity. Since Do is zero-dimensional, in this case we do have a canonical trivialization o
of Sy — My, over Do,. Now we shall give a new definition of cohomology with compact

supports that takes into account this trivialization t... Let w,los (respectively, w W M), ) be
the subsheaf We /R4, (— Do) (respectively, Wy (=Dy)) of We /M, . (respectively, wa).
Let chog be the inverse image of Welos - We M, ., via the morphism Qcéog — W m,

Thus, we have an exact sequence:

0 — C Q—log — chog — C()Clog; — 0

g'r’

which defines a filtration on {2 1.s. Then for i, j > 0, let us define for any Oc-module G:

def

H7(C,6) = H'(C,G ®0. N chog)

and for any Oﬂq _-module H:

H!i’j(ﬂg,ryH) def HZ(MQ T7H®O— /\j (Mlog) )

Note that the push forward map (, naturally defines a morphism (, : H!2 2(C,00) —
Hb 1(/\/lg r Oxg ) Now the obstruction to putting a logarithmic connection on P — C
Wlth normahzed nllpotent monodromy at the marked points and which is of restrictable
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type at infinity is given by a class k) € H (C Ad(P)). On the other hand, the torsor
Sy — M, together with the trivialization t., defines a class ¥y € H"' (M., Oxz,.):

By the same proof as before, we have ¥, = %C*tr(m?). (In the present case, however,
one might remark that in the six types of product considered previously, the first two types

(numbered (1) and (2)) of product vanish all the more trivially since they involve A%w Wgoe

g,r

which is zero.) Also, just as before, we have co(Ad(P)) = —2 tr(x?). Thus, we obtain:

Theorem 3.5. In H"'(M,.,, Ox1, ) =K, we have

1

Y= ZC*UQ

where n = ¢1(w Clog/MIOg)

Let us compute (,n? in the case g = 1,7 = 1. First we introduce the classes = (,£?;
= ((€-[D]); and X = ¢1(Gwe w7, ,)- By Grothendieck-Riemann-Roch, § = 0. On the
other hand, sorting through the definitions, one sees that 1 = A. Thus, we obtain that for
g=1r=1

1
E[ - Z)\
Next let N'©°& : log[ 2] — /\/l1 1 be the finite, log étale covering such that Mlog[ 2]

is the moduli stack that parametrlzes elliptic curves with level structure on the 2-torsion
points. Let

log

Al A% [2] — Mg

be the log étale morphism given by sending an elliptic curve with a trivialization of its
two torsion to the four-pointed curve of genus zero of which the elliptic curve is a double

covering (with ramification exactly at the four marked points). Moreover, A'°® admits a
section over any double covering of ﬂ;‘)j (since the obstruction to such a section lies in
H?Z(Mo,Z/2Z)). Note that both N'°% and A% are, in fact, defined over Z[3]. Also,
note that (over Z[%]), we have an isomorphism A*Sy 4 & N*S; 1 obtained by pulling-back

and pushing forward indigenous bundles. We thus obtain the following result:

Theorem 3.6. When M, , is one-dimensional, the torsor S,, — M, does not admit
any section which is equal to to, over Do, modulo any prime > 5.
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Proof. We have (£1);1 = iAlvl’ and A\ 1 = %cl(wmlﬁ), so (X1)1,1 = %cl(wmlil). Thus,

since N'°8 is log étale, and N* (31)1,1 is an invertible multiple of A*(X)¢ 4, it suffices to
show that:

(1) in Hodge cohomology modulo p (for a prime p > 5), A*cy(wypos) =
0,4

N*ey (wmlog) is monzero; in fact, since A2 admits a section over any
1,1

. ——! . .
double covering of M, it suffices merely to show that ¢; (wrpion ) 18
) 0,4

nonzero modulo p;

(2) the formation of H ,1’1 (Mo, O3z, ,) commutes with base change modulo
p (for p an odd prime).

But both (1) and (2) follow immediately from the fact that M 4 is just P!, with D, =
{0,1,00}. (Note that there is a slight subtlety here in that (2) is not immediately obvious

for M 1 since it is a stack; this is why we choose to verify the assertions of the Theorem

by means of Mg 4.) O

Appendix: Relation to the Complex Analytic Case

In this Appendix, we make the connection between the theory of Schwarz structures
discussed here and the classical notion of the Schwarzian derivative in complex analysis.
Let K be an algebraically closed field of characteristic zero (such as, for instance, the
complex numbers C). Let X — Spec(K) be a smooth, proper, connected curve. Let
P =P(J/J") be the usual P'-bundle on X, and let Vp be a connection on P — X that
makes it indigenous. Then just as in §1, we can form the Schwarzian derivative:

Then the purpose of this Appendix is to show that when X = P'; z is the standard rational
function on P'; and w3 /18 trivialized by (dz)?, then D(¢) is given (up to a factor of

two) by the classical formula for the Schwarzian derivative.

First, let us note that when X = P!, there exists only one connection Vp on 7 : P —
X that makes it indigenous. Indeed, this follows from the fact that Ad(P) ®o, wx,/k has
no sections for degree reasons, plus the fact that the extension

0_>j[2]/j[3] _>j/j[3] _>j/j[2} =0

does not split (since the extension class is the Hodge-theoretic first Chern class ¢ (wx k),
which is nonzero). It thus follows that (P; V p) is necessarily isomorphic to the indigenous
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bundle constructed in Example 1 of §2. Thus, P = X x g X (where we regard the projection
to the second factor as the structure morphism to X); let us fix such an isomorphism for
the rest of the discussion. Also, the Kodaira-Spencer morphism at the diagonal section
on : X — X Xg X = P is an isomorphism. Let z be the standard rational function
on X. Let U C X be the complement of infinity. Thus, z is regular on U. We shall
work mainly on U. For i = 1,2, let p; : P = X xx X — X be the projection to the i*"
factor. Let ¢ be the relative rational function on P|y — U given by pj(z ) p5(z). Let us
simply denote by V the result of applying Vp in the tangent direction E Then clearly,
V(¢) = —1. Let n = 1/¢. Thus, V(n) = n?. Now if we regard P as P(J /7)), and s is
a section given by [a dz,b (dz)?] (where a,b € Ox(V), for some open V C U), then we
have ((s) = a/b. Indeed, both sides of this equation define relative rational functions on
P|y — U. The right-hand side has a simple pole at the section [dz,0 - (dz)?], which, by
computing residues as in the definition of the isomorphism of Proposition 1.4, corresponds
to the section oo x U. Thus, both sides of the equation have a simple pole at co x U, and
the same 1-jet at o, hence are equal. In particular, n(s) = b/a.

Now suppose we are given ¢ € O#(V) The 2-jet jg of ¢ is given by ¢’ dz + gb”(dz)
. Thus,

Thus, if s4 is the section of P over V that is defined by j,, we have n(ss) =
we compute:

&

5y = Vn(so)

—{V( )}(s0) +n(V(ss))
0 (s0) + D(¢) (dz)~

_ (¢~> .

Expanding the derivative on the left and rearranging terms, we get:

o @
PO=tag ~ oy ~ay’

B 1 ¢/// 3(¢//)2} (dz)2

20 ¢ 2(¢)?

We have thus shown the following result:

Theorem A. On P!, the Schwarzian derivative defined at the end of §1 is equal to
one-half the classical Schwarzian derivative.

For a treatment of the classical Schwarzian derivative, we refer to [Lehto].
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Chapter II: Indigenous Bundles in Characteristic p

§0. Introduction

In this Chapter, we study indigenous bundles in characteristic p. In particular, we will
be concerned with how these bundles interact with Frobenius. Our main tool for studying
this interaction will be the p-curvature. We begin in §1 by studying FL-bundles, which
are a special kind of rank two vector bundle with connection on a curve that corresponds
to a lifting of the curve modulo p?. In §2, we define the Verschiebung map on indigenous
bundles to be the determinant of the p-curvature of the indigenous bundle. It turns out that
(essentially) indigenous bundles arise from FL-bundles precisely when their Verschiebung
vanishes. Since it is precisely this sort of indigenous bundle — which (following [Katz]) we
call nilpotent — that corresponds to an MJFY-object in the sense of [Falt], it is worthwhile
defining and studying the moduli space N, .. of such bundles. In order to study N, ., we
make two fundamental calculations (Theorems 2.3 and 2.13) concerning the Verschiebung.
The first tells us that the Verschiebung is finite and flat, of degree p39=3%", and the second
calculates the derivative the Verschiebung in terms of invariants of the indigenous bundle
which are easier to compute. In §3, we define the hyperbolic (higher genus) analogue of an
ordinary elliptic curve: namely, we say that a hyperbolic curve is hyperbolically ordinary
if it admits a nilpotent indigenous bundle at which the derivative of the Verschiebung is
an isomorphism. Using the general machinery developed in §2, we then do a number of
computations involving totally degenerate curves and elliptic curves which reveal that:

(1) the hyperbolically ordinary locus of M, ,. is open and dense (Corollary
3.8);

(2) if one applies the definition of ordinariness in terms of indigenous bun-
dles to the case of elliptic curves, one recovers the classical definition of
an ordinary elliptic curve (Theorem 3.11); and

(3) (at least if ¢ > 3, and p is sufficiently large then) each irreducible
component of A g, that passes through a certain canonical nilpotent
indigenous bundle on a totally degenerate curve has degree > 2 over
Mg,r; thus, there is no canonical choice of a nilpotent indigenous bundle
on a generic r-pointed stable curve of genus g (Proposition 3.13).

We end the Chapter with the observation that (3) is interesting in the sense that it con-

stitutes a deviation from the behavior that one might expect by analogy to the complex
case.
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§1. FL-Bundles

In this Section, we develop the theory of a certain kind of rank two bundle, which we
call an FL-bundle, which arises from looking at the Cartier isomorphism of a curve. It
turns out that the space of such bundles can also be used to parametrize the infinitesimal
deformations of a curve to Z/p?Z. The material we present here is essentially “well-known”
(see, e.g., [Kato], §4), although our point of view is a little different. Let p be a prime. Let
S be a noetherian scheme over F,,. Let us assume that we are given a fine log structure on
S, and let us denote the resulting log scheme by S'°8. Let us denote the absolute Frobenius
([Kato], §4) of S'°8 by ®gios : S°8 — S8, Let flo8 : X8 —, Glo¢ he an r-pointed stable
curve of genus ¢ (as in Chapter I, Definition 2.1, so 29 — 2 +r > 1). In general, we
shall denote by means of a superscript “F” the result of base-changing by ®gis. Let

P X108/ glos Xlog —, (Xlog)F def xlog X S108 B S'°8 be the relative Frobenius.
Deformations and FL-Bundles

We begin by reviewing the Cartier isomorphism (as in [Kato], Theorem 4.12). Since
a curve is one-dimensional, this amounts to the existence of an exact sequence of sheaves
on X:

log log )F =0

0 — ((I)Xlog/slog)_IOXF — OX — wX/S — (@Xlog/slog)_l(wx/s

where the morphism in the middle is the exterior differentiation operator d. Let O def

d(Ox) C wl)?% g+ Then note that since the above exact sequence is functorial with to base-
change T'°¢ — S8 the formation of Q is likewise functorial with respect to base-change.
We would like to consider what happens to this exact sequence when it is tensored over
(@Xlog/slog)il(QXF with (@Xlog/slog)il (TXlog/Slog)F. Let 7T = ((I)Xlog/slog)* (TXlog/Slog)F
We then obtain (by using the long exact cohomology sequence for higher direct images)
the following two exact sequences of sheaves on S:

0— 05 — R'£.Q®0, T — R fuwtfs o, T

0 — R'fu(rxio yg06) " = RVAT = R f.Q®0, T — 0

F log —
where we use the fact that f,(Q ®¢,;}Og/510goxp Txlog/slog) = felwyjs ®ox T) = 0
by degree considerations. Now let us note that 7 has a natural logarithmic connec-
tion V7 obtained by declaring the sections of the subsheaf (® xios, glog ) "1 (Tx108 / giog) T C
(® x108 /5108 ) * (Tx108 s 5102 )F = T to be horizontal. Thus, by using the above exact sequences,

we can compute the first de Rham cohomology module of 7 (where we always understand
7 to be equipped with the connection V7).
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Proposition 1.1. We have an exact sequence:

O — le* (TXlog/Slog)F — leDR,*(T) — OS — 0

which is functorial with respect to base-change T'°¢ — S8 In particular, R' fpr «(T) is
a vector bundle of rank 3g — 2 +1 on S. Finally, R fpr «(7) C R f.(7).

Let us denote by A the R!f,(7Tx1os /Slog)F -torsor on S defined by the above exact
sequence. Let Slos he a fine log scheme whose underlying scheme is flat over Z/p?Z,
and such that S°8 @ Z /pZ = S°&. Let Xlog —, Glog he an r-pointed stable curve of
genus g lifting f1°¢. Then for any r-pointed stable curve ylog _, Glog qf genus ¢ that lifts
(Xlog)F' —, Glog we can associate a section 6y of A as follows. Consider the obstruction
to lifting the relative Frobenius ® yios /gios : X'°8 — (X'8)F to a morphism Xlog _, ylog,
This defines a section ¢} of R f.. (7). Observe that 6}, is independent of the choice of lifting

Xlog, Indeed, this follows from the fact that locally, if one changes the lifting Xlog , the
obstruction cocycle will change by a derivation of X'°¢ applied to a function pulled-back
via @ yios /g10s from (X log)F' " But this will always give zero. This proves that 6}, depends

only on Y12 TLet us also observe that 0, actually defines a section of R!fpr .(7) C
R f.(7T). Indeed, to see this, we reason as follows. We work with bianalytic functions,
as in Chapter I, §1. Then the inverse image via the relative Frobenius of Oxviyr in O yui
coincides with both ir{(® xiox/g10s) ' Oxr} and ig{(P xios /g10x) ' Oxr}. Thus, the two
pull-backs (from the right and left) of 63 to O, both correspond to the obstruction to
lifting i, {(P x108 /g105) "' Oxr} = iR {(Px108/5108) ' Oxr } to a Oz-flat subalgebra (with log
structure) of O,,. This shows that 0y is horizontal.

Now suppose that we consider another lifting 2198 — S'°& of (X'lo8)F" — Glog Then

the difference between the liftings Ylog and Zlos naturally defines a section 6y 7z of the
vector bundle R! f, (Tx10s / gloz )T, It follows immediately from the definition of an obstruc-

tion class that 6y = 67, + 0y . Thus, if there existed a lifting Yo such that 0y is a
section of the subsheaf R f, (Tx0s /g10:)F C R fpr,«(7), then it would follow that there

exists another lifting Z'°¢ guch that 67, = 0. Thus, the relative Frobenius would lift to a

morphism W : Xlos —, Zl%¢, But then by pull-back, ¥ would induce a nonzero morphism

of (P xios /Slog)*(wl)?%)F into wl)‘;%, which, by degree considerations, is absurd. Thus, we

conclude that no 64 lies in R fi (Txi0x /102 )" € R fpr,« (7). In other words, for every
lifting Y8, @y defines a section of A. Let D be the le*(TXmg/Slog)F—torsor over S of

liftings of (X'°&)F — Gl to Slos. Then, we see that we have defined a canonical morphism
of R f, (Tx10s  g1os ) -torsors

F:D— A

Since any morphism of torsors is necessarily an isomorphism, we see that we have proven
the following result: ([Kato|, Theorem 4.12 (2))
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Proposition 1.2. The canonical morphism F : D — A is an isomorphism.

Let (£,Ve) be a rank two vector bundle on X with a connection V¢ (relative to f1°8).
Suppose that there exists a horizontal exact sequence

0—-7 —-&—-0x—0

Then this exact sequence defines a section n of R fpgr «(7) over S.

Definition 1.3. We shall call (£, V¢) an FL-(vector) bundle if n maps to O5 C Og under
the map R! fpr (7)) — Og of Proposition 1.1. We shall call a P!-bundle with connection
(P,Vp) on X8 an FL-(P!)-bundle if it can be written étale locally on S as the P!-bundle
associated to an FL-vector bundle.

Remark. The letters “FL” stand for Frobenius lifting. Since a FL-bundle defines a section
of the torsor A, it follows by Proposition 1.2 that it also defines a lifting Y08 — §1°8 of
(Xlo8)F" — Glog  Also, we shall see below (Corollary 1.5) that, at least if S is reduced, then
if a horizontal exact sequence as above exists, it is necessarily unique.

The p-Curvature of an FL-Bundle

Let us assume for the rest of the Section that p is odd. Throughout this Chapter
the notion of the p-curvature of a bundle with connection in characteristic p will play an
important role. We refer to [Katz|, §5,6; [Ogus], §1.2,1.3 for basic facts concerning the
p-curvature. ([Katz], of course, does not handle the arbitrary “log-smooth” case, but the
definitions and proofs (of the properties that we will need) go through without change. At
any rate, on the sorts of curves that we are working with, the theory of [Katz], §5,6, is
literally valid on an open, schematically dense subset, and many assertions can be checked
after restriction to such an open subset.) Let (£,Vg) be an FL-bundle. We would like
to compute the p-curvature of (£,V¢). The p-curvature P will be a horizontal section
of TV ®p, Ad(E). Occasionally, we shall think of P as a morphism Ad(£) — 7Y or a
morphism 7 — Ad(€) (using the fact that Ad(E) is self-dual). By abuse of notation, we
shall also refer to these morphisms by the notation P. Now, first of all, since V¢ stabilizes
the filtration 7 C &, by functoriality, P also respects this filtration. Secondly, since 7°
and Ox clearly have p-curvature zero, P not only respects the filtration, but is nilpotent,
ie, P: 7T — Ad(E) maps into the subbundle 7 C Ad(€) (given by endomorphisms of £
obtained by projecting & — Ox, mapping Ox to 7, and then injecting 7 — &). Thus, P
basically amounts to a morphism from 7 to 7, i.e., a section of f,Ox = Og.

Proposition 1.4. Assume that p is odd. If (£,Ve) is an FL-bundle on X'°%, then
P T — Ad(E) is given by multiplication T — T by —1, followed by the inclusion
7T — Ad(E).
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Proof. Since the universal example of an FL-bundle on an r-pointed stable curve of genus
g is given by the torsor A over M, ., which is smooth, it suffices to check the assertion after
restriction to a closed point of this universal .A. Thus, we can assume that S = Spec(k),
where k is a finite field. Then S has a canonical lifting to a flat scheme over Z/p*Z, namely,
S = Spec( (k)/p*W (k)) (where W (k) is the ring of Witt vectors with coefficients in k),

and S has a natural Frobenius lifting ®z. Thus, for any smooth scheme U— S we may

speak of a Frobenius lifting (mod p?) on U, that is, a S-linear morphism ® : U — UF
def 77

whose reduction modulo p is the relative Frobenius U — Ut of U = U ® Z/pZ.

Now let us take U to be an affine open subset U C X, at which f is smooth, and
which contains no marked points. Let U — S be a smooth lifting of U, and let ¢ be a
local coordinate on U. By the interpretation of FL-bundles in terms of obstructions to
Frobenius liftings, we may compute £ by using as follows: Over U, &|y = Ty ® Oy.
Let us write sections of £ relative to the decomposition 7|y @& Op and the basis given

by (@X}og/slog(i) ,0); (0,1) ; and let us denote by V the connection V¢ applied in the

direction 4 2~ Then V is given by adding to the direct sum connection the matrix

0 1o
p
(0 0)

where the map @’ is the derivative (with respect to ¢) of some local Frobenius lifing
® on U. Since tF' — (14 t)? — 1 is a Frobenius lifting, (') must be of the form
(1+¢)P—1+f(t), for some function f(¢) on U. Therefore, Q)’ is of the form (1+¢)P~1+f/(¢).
This gives V(1,0) = 0; V(0,1) = ((1 + )P~ + f/, ) Therefore, (V)P(1,0) = 0 and
VP(0,1) = (p — 1)!(1,0) (since (4£)? f = 0). Finally, it follows easily from using the fact
that F is a cyclic group that (p — 1)! = —1 (in F}). This completes the proof. O

Corollary 1.5. Assume that p is odd. Let (£,Veg) be a rank two vector bundle with
logarithmic connection on X'°8 (over S'°¢) defined by a section n of R fpr «(T). Then
(E,Ve¢) is an FL-bundle if and only if its p-curvature is nonzero at some point of every

fiber of f: X — S.

Proof. The “only if” part follows from Proposition 1.4. On the other hand, suppose that
the image of n under the map R' fpgr «(7) — Og of Proposition 1.1 vanishes at a point.
By restricting to that point, we may assume that S is the spectrum of a field, and that
the image of 17 in Og vanishes identically. But then, it follows from the exact sequence
of Proposition 1.1 that (£,Vg¢) is the pull-back of a bundle under Frobenius. Then its
p-curvature must vanish identically, which contradicts our assumption. ()

Corollary 1.6. Assume that p is odd and that S is reduced. Let (£,V¢) be an FL-bundle.
Let U C X be an open subset; (L, V) be a line bundle with logarithmic connection on U'8;
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and v : L — E|y be a horizontal morphism of Oy-modules with logarithmic connections.
Then ¢ factors through the injection T |y — E|y in the definition of £ as an FL-bundle.

Proof. By shrinking U, we may assume that f : X — S is smooth on U, and that U
stays away from the marked points. We may also assume that the composite of ¢ with the
projection |y — Oy is an isomorphism. Thus, we obtain a horizontal isomorphism of
line bundles £ — Op. But this implies that (£, V) has p-curvature zero. Thus, we get
a horizontal isomorphism £ & 7|y — &|y. Since the left-hand side has p-curvature zero,
the same is true of the right-hand side. But this contradicts Proposition 1.4. ()

Remark. 1t is not difficult to construct counterexamples to Corollary 1.6 if one does not
assume that S is reduced.

§2. The Verschiebung on Indigenous Bundles

In this Section, we define a “Verschiebung” morphism on the space gg,r of Schwarz
structures that takes values in the space of square differentials (twisted by Frobenius). We
then prove various basic properties of this morphism, such as computing its derivative.
This computation reveals that the derivative looks rather like the Verschiebung morphism
for the Jacobian of the curve, thus justifying the terminology. On the other hand, as
we shall see in §3, unlike the Verschiebung of the Jacobian which only pertains to H*
of the curve, the Verschiebung on indigenous bundles pertains to a nonabelian invariant
of the curve, namely, the nilpotent indigenous bundles on the curve. It turns out that
the study of nilpotent indigenous bundles, and thus of the Verschiebung on indigenous
bundles are central to understanding uniformization theory in the p-adic context. In this
Section, Mg,r (respectively, gg,,,) will denote the moduli stack of r-pointed curves of genus
g (respectively, equipped with a Schwarz structure) over F,,. We assume throughout this
Section that p is odd.

The Definition of the Verschiebung

Let S'°8 be a fine noetherian log scheme over F,. Let fl°8 : X8 — Glog he an r-
pointed stable curve of genus g. Let D C X be the divisor of marked points. Let (£, V¢)
be an indigenous bundle on X'°8 (see §2 of Chapter I for more on such bundles). We
remark here that throughout this paper, when we do various manipulations with indigenous
bundles, it will be simpler to work with vector bundles, rather than P*-bundles. Of course,
indigenous vector bundles only exist under certain conditions (cf. Proposition 2.6 of Chap-
ter 1), but this will not pose any problem, since we can always either Zariski localize on the
curve, or pass to some sort of covering of the curve, and then descend for the final result.
Thus, in the future, for the rest of the paper, we shall act as if this problem does not exist,
and always work with indigenous vector bundles, when it is technically more comfortable
to do so.
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We maintain the notation of §1 for the various Frobenius morphisms and for 7 =
(P x108 /108 ) * (Txx108 s g105) T Let Pg : T — Ad(E) be the p-curvature of (€, V). Consider
the composite of Pg with its dual PY. This composite is a horizontal morphism 7 — 7V,

hence defines a section of ( f. (wl;(’%)@)z)F . Let Ve be —3 times this section. Another way
to put the definition of Ve is as follows: We consider the square (Pg)? : (7)%? — End(€)
of Pg, take the trace, and multiply by —%. Yet another way to put the definition of V¢ is

that it is the determinant of Pg (regarded as a map (7)%? — Ox).

Proposition 2.1. Assume that S is reduced. Then Ve is zero if and only if the image of
Pe consists of nilpotent endomorphisms of &€.

Proof. Immediate from the definitions. ()

Thus, we may think of Vg as a measure of how nilpotent Pg is. Note, in particular, that at
a marked point, by definition V¢ has nilpotent monodromy, so the p-curvature is already
nilpotent there. Thus, V¢ has zeroes at all the marked points. By abuse of notation, we

shall denote by V¢ the resulting section of (f. (wl)?%)@’z(—D))F :

Definition 2.2. We shall refer to the section Ve of (f. (wl)?%)‘g’Z(—D))F as the Ver-

schiebung of the indigenous bundle (£,V¢).

. . —log . . .
Thus, in the universal case, when f1°8 : Cl°8 — M g+ 18 the universal r-pointed stable curve
of genus g, we obtain a morphism of M, ,-schemes:

Vor:Sgr — Qg

where Q, , is the geometric vector bundle corresponding to (i.e., Spec of the symmetric
algebra of the dual of) (f. (wl)?%)m(—D))F. Note that both S, - and Q,, . are of dimension

3g—3+r over M, . The rest of this Chapter will be devoted to studying this Verschiebung
morphism Vg .

Let us begin with some observations concerning the degree of V, . as a polynomial
map. Let V: = Vg + 0 be a logarithmic connection on £ that makes it an indigenous
bundle; here we may assume that 6 is an Ad(&)-valued differential which defines a square-
nilpotent endomorphism of £ and which corresponds to a square differential #5P. Thus,
0% = 0. If we then compute the p-curvature of (€, V%) by, say, working locally on U C
X where there is a local coordinate x, and letting V (respectively, V’; 6,) denote V¢

(respectively, V%; 6) applied in the direction 0 def %, we note that because 62 = 0, all the
terms that involve 6, more than %(p + 1) times must vanish. Moreover, there is only one
term that involves 6, exactly %(p + 1) times, namely:
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0, VO,V...VO,

that is, alternating #,’s and V’s, with a total of %(p + 1) copies of 6, and %(p — 1) copies
of V. For future reference let us call this term &. Note that since 2 = 0, any string
0, V 6, can be rewritten 0, [V,0,] (where the brackets denote the commutator), and
that this commutator [V, 6,] is a linear operator (that is, linear over Ox). Moreover, this
linear operator [V, 6,] preserves the Hodge filtration of £. Thus, £ may be rewritten as 0,
times [V, 0,] to some power. Since [V, 0,] preserves the Hodge filtration, it thus follows
that ¢ is a linear operator on £ which is nilpotent with respect to the Hodge filtration. In
particular, £2 = 0. At any rate, we may at least conclude that in the expression for the
trace of the square of the p-curvature of V%, 6 occurs no more than p times in each term.
We thus obtain the following result:

(*) Relative to the affine structures of Sy, and Q ., the pull-backs of
the affine variables on Q. via the morphism V. are polynomials in
the affine variables of S, of degree < p.

In fact, we would like to conclude a stronger result, namely that the degree is exactly
p. In order to do this, we need to enlist the aid of Jacobson’s formula (see, e.g., [Jac],
pp. 186-187): This formula states that if a and b are elements of an associative ring R of
characteristic p, then

p—1
(a+b)P =aP +b° + Zsi(a,b)
i=1
where the s;(a,b) are given by the formula:
p—1
(ad(ta +b))P" a) =Y isi(a,b)t"!

i=1

computed in the ring R[t|, where t is an indeterminate. In our case, we let b = V and
a = 6,, and we wish to compute the s;(a,b), where j = %(p —1). Let n be the coefficient
multiplying #/~! in the expression (ad(ta+b))?~1(a). Let a = ad(a); 3 = ad(b). Then the
terms in 7 look like 2 (p—3) copies of a and £ (p+1) copies of 3 applied to a in some order.
Now ultimately, in order to compute the Verschiebung, we are interested in computing
tr(n-£). Let T be one of the terms that make up 7. Now we separate the analysis of 7 into
two cases: the case where 7 begins with an «, and the case where 7 begins with a j.

Suppose that 7 begins with an . Thus, 7 looks like

a Y. .Yp—2 Q
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where each ~; is either o or 3. Now let us note that when one applies @ = ad(6,) or
£ = ad(V) to a linear operator on £, one gets back a linear operator. Moreover, « applied
to any linear operator on &£ yields a linear operator that preserves the Hodge filtration on
E. Thus, we conclude that 7 is a linear operator on £ that preserves the Hodge filtration.
Since ¢ is nilpotent with respect to the Hodge filtration, it thus follows that tr(r - £) = 0.

Now suppose that 7 begins with a (:

Byr--Yp2a

Let us denote by o the linear operator on &£ given by ~v;...v,-2 a (i.e., we leave off the
initial #). We would like to show that o preserves the Hodge filtration on £. To see this,
first note that among the ~;’s, the number of 3’s is exactly one greater than the number of
a’s. Also, note that (by Griffiths transversality) relative to the Hodge filtration on Ad(E),
applying 3 decreases the filtration index [ (in F'(Ad(€))) by at most one, while applying
a always increases the filtration index [ by one. Thus, since a = 6, € F'(Ad(£)), it
follows that o € FO(Ad(£)), i.e., it fixes the Hodge filtration on &, and so o - £ is nilpotent
with respect to the Hodge filtration. In particular, tr(o - ) = 0. Since the trace map is
horizontal, we thus obtain that tr([V,o - &]) = 0. Therefore, when we multiply 7 = (o)
by & and take the trace, we get

tr(r- &) = tr([V,0 - £]) —tr(o- [V, £])
= —tr(o - [V, £])

In other words, tr(7 - £) depends only on the images of o and [V, £] in FO/F1(Ad(E)).

To compute the image of o in F°/F(Ad(£)), we must analyze o in greater detail.
Now we saw that when we compute o by applying o’s and §’s to a, 3 decreases the filtration
index by at most one. The only time it fails to decrease the filtration index by one is when
it is applied to a linear operator which already has a nontrivial image in F~1/F°(Ad(£)).
If this should occur even once, then the net change in the filtration index as a result of
applying all the 7;’s (in the computation of o) to a is < 0. Thus, if this occurs even once,
o€ F1(Ad(€)), so tr(o - [V,£]) = 0. On the other hand, if, during the calculation of o, we
apply « to a linear operator in F1(Ad(£)), we get zero. Let us call the case where neither
of these two phenomena ever occurs the nondegenerate case. Thus, only the nondegenerate
terms 7 will make a nonzero contribution.

Let us suppose that 7 is nondegenerate. Then in order to compute the image of ¢ in
F°/F1(Ad()), it suffices to merely keep track of the leading term (relative to the Hodge
filtration on Ad(£)) as we apply the various «;’s. Now let us note that it follows from
the fact that the Kodaira-Spencer morphism for the Hodge filtration on £ is the identity
that if [ > 1, then applying 3 to a linear operator L in F'(Ad(€)) yields a linear operator
in FI=1(Ad(€)) whose image in F'=!/F!(Ad(£)) is the image of L in F'/F'*1(Ad(E))
times 0. On the other hand, if I < 1, then applying « to a linear operator L in F'Ad()
yields a linear operator in F'*1(Ad(€)) whose image in F!*1/FIT2(Ad(€)) is the image
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of L in F'/F'*1(Ad(E)) times #5P - 9. Thus, if 7 is nondegenerate, then its contribution
—tr(o - [V,€]) is given by (657 - 9)P - (9)P.

It remains to compute the number of nondegenerate terms 7. Let us call this number
N,, and regard it as an element of F),. We are interested in whether or not N, € F,, is
zero. Although one can presumably compute N, explicitly using some sort of combinatorial
argument, we prefer to take the following approach. Note that IV, does not depend on
g or 7 or on the particular curve f'°8 : X' — §°8 but only on p. Thus, it suffices to
show that (for each odd prime p) N, # 0 for one particular curve (with g and r arbitrary).
We shall do this in §3 when we do various computations with elliptic curves. Thus, we
obtain that Vg (which is a section of (f. (wl)?fs)@Z(—D))F ), when applied to (97)? yields

the function ¢ (0°P - )P - (9)?, where ¢ € F*. Put another way, the degree p component
of Vg’r is a morphism:

VI {(Fu (i) B2 (=D)) I — SP(£.(w8 )9 (= D))

which is equal to ¢ times the Frobenius morphism, i.e., the p**-power map. We shall see
later in our computations with elliptic curves that ¢ = —1. Thus, we thus obtain the
following important result:

Theorem 2.3. Relative to the affine structures of Sy and Q. the pull-backs of the

affine variables on @97,4 via the morphism V. are polynomials in the affine variables of
[p
g7

3977« of degree exactly p, with the leading term V ]r (i.e., the degree p component) given

by —1 times the p'"-power map. In particular, Vgr 15 a finite, flat morphism of degree
39—3+r
P .

Proof. It remains to verify the last assertion (that V, . is finite and flat of the right degree).

Let U = Spec(A) — My, be étale. Then over U, we may choose affine coordinates X;
and Y; of S, , and Qg , so that V,, looks like (the map induced on Spec’s by):

def

BpY AYy,. . Yagoage] = C = A[Xy, . Xagos4r]

where Y; — fi(X1,...,X35-34r), and f; is of the form “—X? plus terms of lower degree.”
Then it is easy to see that, as a B-module, C' is generated by monomials of the form

39g—3-+r

Il
=1

where 0 < e; < p — 1. In particular, C' is a finite B-module, so ngr is finite. Since Vg;,n is
a finite morphism between regular algebraic stacks of the same dimension, it follows from
commutative algebra that V, , is flat. To compute the degree of V.., let P = Proj 4 (C[T7)
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(with the grading such that 7" and the X;’s have degree one). Then Spec(C) C P is an
affine open subset. Let S; C P be the hypersurface which is the closure of the zero
locus of f;. Then the scheme-theoretic intersection V' of all the S;’s has degree p39=3+"
over Spec(A). Also, the intersection of V' with P — Spec(C) = Vi (T') = Proj(C) is just
Vi (XT,..., X5, 34,) € Proj(C), which is the empty set. Thus, V' C Spec(C), and so
deg(V,.) = deg(V — Spec(A)) = p3973+7. O

Before continuing, we introduce some more terminology that will be of use in the
future:

Definition 2.4. Let (£,Vg) be an indigenous bundle on X'°2. Then, we will say that
(€,V¢) is nilpotent if Vg is zero. We will say that (£, V) is admissible if P¢ : Ad(E) — TV

is surjective.

Note that the terminology of a “nilpotent indigenous bundle” that we have introduced
here is (by Proposition 2.1) consistent with that of [Katz]. Also, let us observe that the
nilpotent bundles form a closed subscheme

Ng’r g gg’r

while the admissible bundles form an open subscheme

. . —=ad - . . —ad
We shall see later in this Chapter that S;Tm (N, is nonempty and that neither S;Tm nor

N, is contained in the other. Note, further, that Theorem 2.3 implies that the natural
morphism

Ng,r — Mg,

is finite and flat of degree p39—3+",

Finally, we observe that one thing which is interesting about nilpotent indigenous
bundles is that (if S is the spectrum of a perfect field, then) by a result of [Falt] such
indigenous bundles arise as the crystalline Dieudonné modules of certain finite, flat group
schemes on X%, This point of view will be pursued further in later chapters. This
observation is the main reason for studying A/ g,r and Vg’,,, which is the goal of the present
Chapter.
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The p-Curvature of an Admissible Indigenous Bundle

As a prélude to finding out more about V, ., it is worth looking at various basic
properties of the p-curvature of an admissible indigenous bundle.

Proposition 2.5. There is a bijective correspondence between nilpotent, admissible in-
digenous bundles (up to tensor product with a line bundle of order two) and FL-bundles
whose projectivizations are indigenous given as follows: If (£,V¢) is a nilpotent, admissi-
ble indigenous bundle on X'°2, let Ps : T — Ad(E) be its p-curvature. Then the kernel of
P Ad(E) — TV is an FL-bundle.

Moreover, if (£,V¢) is a nilpotent, admissible indigenous bundle on X'°8, there exists
a unique rank one subbundle M C & that is annihilated by the endomorphisms in the image
of Pe. This subbundle M is stabilized by Ve. The induced connection V o4 has p-curvature
zero, and we have a horizontal isomorphism M®? = T .

Finally, suppose that S is reduced, and (£,V¢) is nilpotent, admissible, and indige-
nous. Let U C X be an open set, and (L,V ) a line bundle with logarithmic connection
(with respect to f1°8 : X198 — S1°8) on U. Let 1 : L — E|y be a horizontal morphism.
Then v factors through M C &.

Proof. First of all, since (£, Vg) is admissible, PY is surjective, and thus its kernel is a
rank two vector bundle F which is stabilized by V¢, hence gets a connection V. Since
(€,V¢) is nilpotent, it follows that 7 = Im(Pg) C F, and that this inclusion 7 — F
is locally split. Also, this inclusion 7 < F is necessarily horizontal, and we also have a
horizontal isomorphism F /7 = Ox. Thus, in order to show that (F, V#) is an FL-bundle,
it suffices to show that the p-curvature of (F,V #) is nonzero generically on every fiber of
f: X — S (by Corollary 1.5). Thus, we may assume that S is the spectrum of a field.
Now on some nonempty open set U C X, there is line bundle with connection (£,V,)
and a horizontal surjection p : £ — £ such that Im(Pg|y) is given by endomorphisms that
vanish on Ker(x) and whose image is in Ker(u). Then sorting through what we have done,
we see that we have a horizontal isomorphism F|y & €|y @ L1, Since £ has p-curvature
zero, the fact that €|y has nonzero p-curvature implies that the same is true of F|y. This
completes the proof that (F, V) is an FL-bundle.

On the other hand, if we are given an FL-bundle (F,Vz) whose projectivization
(P, Vp) is indigenous, let (£, V¢) be an indigenous vector bundle whose projectivization is
(P,Vp). Then there exists a line bundle with connection (£, V) (relative to fl°¢ : X'°8 —
S'°g) such that we have a horizontal isomorphism F ®@¢, £ = £. Taking determinants,
we thus get a horizontal isomorphism £%? = TV, so the p-curvature of £ must be zero.
Thus, under the natural identification of Ad(F) with Ad(E), we see that the p-curvatures
of (£,Ve) and (F, Vx) coincide. Thus, by our computation in Proposition 1.4, (£,V¢) is
admissible and nilpotent. Also, it is easy to see that these two procedures are inverse to
one another, thus proving the bijective correspondence. We take M C £ to be 7 ® L C
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F ® L = E. The remaining assertions follow immediately from what we have done so far,
plus Proposition 1.6. O

Proposition 2.6. Let (£,V¢) be an indigenous bundle on X'°8. Let Pg : T — Ad(E) be
its p-curvature. Then:

(1) We shall call the composite Hg : T — Txios/g10s 0f Pe with the pro-
jection & — Txios ) g102 arising from the Hodge filtration on &€ the square
Hasse invariant of (£,Ve). If (£,V¢e) is admissible, then Hg is nonzero.

(2) Suppose that (£,V¢) is admissible. Then the zero locus V(Hg) C X is
a divisor Dg which is finite, flat, and of degree (p —1)(29g — 2+ r) over
S. We shall call it the double supersingular divisor of (€,V¢).

(3) Suppose that the indigenous bundle (€,V¢) is admissible and nilpotent.
Then there exists a line bundle H on X whose square H®? is isomorphic
to TV ® Txlos ) gloz , together with a section x of H over X whose square
is Hg. We shall call x the Hasse invariant of (£,Ve). In particular,
there exists a divisor Ee C X such that Dg = 2 Eg. We shall call E¢
the supersingular divisor of (€,V¢).

(4) Suppose that S is reduced. Then any two nilpotent, admissible indige-
nous bundles with the same supersingular locus are isomorphic.

Proof. For (1), it suffices to prove the statement after we restrict to a fiber of f : X — S
thus, we may assume that S is the spectrum of a field. If Hg were zero, then that would
mean that Im(Pg) lands in FO(Ad(€)). Now FY(Ad(€)) surjects onto Ox. If the image
of P¢ in Ox is nontrivial, we get a contradication as follows: On the one hand, Im(P¢)
is stabilized by Ve. On the other hand, the fact that the Kodaira-Spencer morphism of
the Hodge filtration is an isomorphism means that Vg applied to Im(Pg) will not be in
FO(Ad(&)). If the image of Pg in Ox is trivial, then it must lie in F1(Ad(£)) = wl)?fs.
Then, by using the fact that the Kodaira-Spencer morphism is an isomorphism, we again
get a contradiction. Assertion (2) follows immediately from (1).

Now suppose that (£, V¢) is nilpotent, admissible, and indigenous. Let M C & be the
rank one subbundle of Proposition 2.5. Let £ — N be the surjection arising from the Hodge
filtration. Then composing the injection M — £ with this surjection, we get a morphism
X : M — N, whose square (under the identifications M®? = T; N®? & 7310, g10¢ ) is equal
to the Hasse invariant. Thus, if we let E¢ be the zero locus of y, we have Deg = 2 Fg.
This proves (3).

To prove (4), we assume that S is the spectrum of a field, and that we have two
connections Vg and Ve on &, both of which make £ a nilpotent, admissible indigenous
bundle, and such that the respective supersingular divisors Eg and E¢ coincide. Let us also
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assume that V. = V¢ +6, where 0 is a square differential. Let 1 : M — & and/ : M' — &
be the respective inclusions, and xy : M — N and ' : M’ — N the respective composites
discussed in the preceding paragraph. We claim first of all that M and M’ are isomorphic.
Indeed, this follows from the fact that N'®@ M™! = Ox(Eg) = Ox(Ez) X N @ (M')~L.
Thus, we shall henceforth identify M and M’. Now yx and y’ differ by multiplication by
a section X of Og, that is, x = A-x’. Let i1 : M — &£ be ¢, and let i5 : M — & be //
multiplied by X. Then it follows that there exists a morphism o : M — F!(€) such that
i1 = i2 + a. Now let s be a horizontal section of M (over some open set U C X). Since
the p-curvature is a horizontal morphism, Ve(ii(s)) = 0 and Vg(i2(s)) = 0. Thus, we
compute:

Ve (iz(s)) = (Ve + 0)(i1(s) + a(s))
= Ve(a(s)) + 0(ir(s))

Suppose that a is nonzero. Then in the last line, the first term has a nonzero image under
the surjection & — N (since the Kodaira-Spencer morphism is an isomorphism), while
the second term lies in F1(€). Since the sum of these terms is zero, we thus obtain a
contradiction. Thus, o must be zero. Then we obtain that (i1 (s)) = 0, so (if # # 0, then)
i1 maps into F1(£) C €. But then y = 0, so by (2), we again obtain a contradiction. This
completes the proof of (4). O

Proposition 2.7. Suppose that S is reduced. Let (£,V¢e) be admissible indigenous on
X8, Let Pe : T — Ad(E) be the p-curvature. Let U C X be open, and let (L, V) be a
line bundle with logarithmic connection (relative to f'°8) on U whose p-curvature is zero.
Let v: L — Ad(E) be a horizontal morphism. Then v factors through T = Im(Pg).

Proof. By shrinking U, we may assume that £ and 7 | have horizontal generating sections
s and t, respectively. We may assume that s and ¢ generate a subbundle G C Ad(&)|y of
rank two. If we take their commutator in Ad(E), we see that [s,¢] must be in G. Indeed, if
this were not the case, then the p-curvature of Ad(€) would be zero. But the p-curvature
of Ad(€) is given by Ad(Pg¢) which is nonzero everywhere since (£, V¢) is admissible. This
proves the claim. Thus, G is a Lie subalgebra of Ad(E), stabilized by the connection on
Ad(€) and whose p-curvature is zero. Being of rank two, it is necessarily solvable, hence
contains a nilpotent subalgebra L C G which is stabilized by the connection on Ad(E)
and has p-curvature zero. Now K defines a horizontal filtration N' C £|y with respect
to which it is nilpotent. Since (N)®? = K, it follows that A/ has p-curvature zero. Let
0 : End(€ly) — Ad(E)|y be the canonical projection given by quotienting out by the scalar
endomorphisms. Then clearly the image of N ® €|y € End(€]y) (i.e., the endomorphisms
that anihilate N' C &|y) under § is equal to G. Since G and N have p-curvature zero,
it thus follows that £|y has p-curvature zero, which contradicts the fact that (£,Ve¢) is
admissible. ()

Proposition 2.8. Suppose that f'°% is obtained by gluing together various filog, as in
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the last subsection of Chapter I, §2. Suppose that (£,V¢) is nilpotent, admissible, and
indigenous on X'°8. Then it is automatically of restrictable type.

Proof. The subbundle M C & (of Proposition 2.5) is stabilized by £ and has p-curvature
zero. Thus, if we restrict to an irreducible component X gog, the monodromy at any marked
point of X;Og must be nilpotent with respect to the filtration defined by M C £. This
completes the proof. ()

As mentioned earlier, the reason that we are interested in nilpotent, admissible indige-
nous bundles is that they define MJFY-objects in the sense of [Falt]. Let us suppose that
S = Spec(k), where k is a perfect field, and that f : X — S is smooth. Let S = Spec(A),
where A = W (k)/p?W (k), and W (k) is the ring of Witt vectors with coefficients in k. Let
us denote by ®4 the canonical Frobenius morphism on S. We suppose that S and Siare
endowed with the trivial log structures, and call the resulting log schemes Slog and S'°g,
respectively. Let f1°8 : X8 — §l°¢ he a smooth r-pointed curve of genus g that lifts f log,
Let (€,V¢) be an indigenous bundle on X'°8. Let £ = F1(€) @ (£/F'(E)). Let U C X be
an open subset, and let ®!°8 : Ules — U8 be a lifting of Frobenius. If e is a section of &,
let V§(e) be the section of ®*(E/F(£)) @ wynos /gi0x obtained by applying Ve to e (and
regarding the result modulo F'(€) ® wyyiox /g10x) to get a section of (£/F(E)) ® wypiox gos,
then pulling back by ® on £ and by % d® on wyyies jg1es. Then we can define a logarithmic
connection Vg on ®*(EF) by letting Ve (®~1(0,e)) = 0 (if e is a section of £/F(E))
and Vg (@7 1(ef,0)) = (0,VE(e)) (if e is a section of F(£)). Then, it is easy to see (as
in [Falt], §2) that for different ®, the pairs (®*(EF) &+ Vo) glue together to form a bundle
with connection F*(&£,Vg) on X'°8. Note that F*(£, V) depends on the choice of lifting
Xlog N Slog.

Definition 2.9. We shall say that (£, V¢) forms an MFY -object on X'°2 if

(E,Vg) ® ([»,VL:) = F*(g,Vg)

for some choice of lifting X'°& — §1°¢ and some line bundle with connection (£, V) whose
square is trivial.

Note that this definition is consistent (though slightly weaker, since we allow the ambiguity
of tensoring with (£, V£)) with the notion of being an object of the category MFY of [Falt],
§2. Tt is shown in [Falt] (Theorem 6.2) that the de Rham cohomology of a semistable family
of varieties over X°8 equipped with the Hodge filtration and the Gauss-Manin connection
forms an object of MFY (aslong as p—2 is greater than or equal to the relative dimension
of the family of varieties). The following result provides the link between what we are doing
here and [Falt], §2:
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Proposition 2.10. Let (£,V¢) be an indigenous bundle on X'°8. Then (£,Ve) forms an
MFY -object on X'°8 if and only if (£,V¢) is admissible and nilpotent.

Proof. First, let us assume that (£, V¢) forms an MFY-object on X'°8 for the lifting
Xlog — Glog One computes easily from the definition of the connection Vg that the p-
curvature is nilpotent (with respect to the filtration 0 & (®*E/F(€)) C ®*E). Also, (just
as in the proof of Proposition 1.4), the derivative %CI)’ is of the form (1 +t)P~1 + f/(¢).
Thus, since the Kodaira-Spencer morphism is the identity, it follows that the p-curvature
(applied to 0 L d/dt) is obtained by multiplying a section of (®*F(£)) @ 0 by ®~1(9%)
times the (p — 1) derivative of (1 + )P~ + f/(¢) (which is just —1) and regarding the
result of this multiplication as a section of 0® (®*E/F1(£)). In particular, we see that the
p-curvature is nonzero. Thus, (£, V¢) is admissible and nilpotent.

On the other hand, suppose that (£, V¢) is admissible and nilpotent. By the bijective
correspondence of Proposition 2.5, (£,Vg) corresponds to an FL-bundle (G,Vg). By
Proposition 1.2, this FL-bundle corresponds to a lifting Xlog — §log Tt remains to see
that F*(&, V¢) taken with respect to this lifting is isomorphic to (£, Ve) (up to tensoring
with an (£,V.) whose square is trivial). Let N = £/F1(£). Let M = @}/S(NF).
Let Vo be the connection on M for which the sections of /¥ are horizontal. Thus,
(M,V)®2 = (T,V 7). Now, sorting through the definitions and using the fact that the
Kodaira-Spencer morphism is the identity reveals that if X = U{JV (where U and V
are affine opens), then F*(£,V¢) ® (M, V\) is just the extension of Ox by 7 obtained
from the 1-cocycle which is the difference between Frobenius liftings on U and V. It thus
follows from the definition of the canonical morphism F : D — A of Proposition 1.2 that
F*(&,Ve) ® (M, V) is exactly the bundle (G, Vg). Thus, it follows from the definition
of the bijective correspondence in Proposition 2.5 that F*(€,Ve) = (€,Ve) ® (L£,V ) for
some (£, V) whose square is trivial. O

The Infinitesimal Verschiebung

Let wx/s be the relative dualizing sheaf of f : X — S. Thus, if D C X is the divisor of
marked points, we have wx,g(D) = wl)?%. Let ®x/g: X — X ¥ be the relative Frobenius

over S. Recall from duality theory (see, e.g., [Harts] for a treatment of duality theory) that
since f and @y, are local complete intersection morphisms, we have a trace morphism:

troy, s+ (Px/s)ewx/s — (wxys)”

where we regard wx /g as R<I>!X/S(wX/5)F. On the other hand, let Y'°% be the log scheme

whose underlying scheme is X and whose log structure is the same as that of X'°% away
from the divisor D of marked points, and equal to the pull-back of the log structure of 58
on the open subscheme where f is smooth. Then we also have a morphism arising from
the log version of the Cartier isomorphism (applied to Y'°8 — §'°8):
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C: (Px/s)swx/s — (wxys)”

The following result is “well-known,” but I do not know an adequate reference for it:
Lemma 2.11. The morphisms tre, ,, and C are equal.

Proof. By a density argument, we reduce to the case where f is smooth. By naturality,
we reduce to the assertion that these two morphisms are the same when X = Spec(F,[T);
S = Spec(F)) (where T is an indeterminate). Since trg, . is the reduction modulo p of
a construction that holds in arbitrary or mixed characteristic, we can calculate tre, o by
considering the trace map obtained from duality for the finite morphism ® : Spec(Z,[1]) —
Spec(Z,|T)) given by T — TP. Since tre(®*(dT)) = p dT, and ®*(dT) = p TP~1dT, it
follows that tre (TP~ 1dT) = dT. By reducing this formula modulo p and comparing with
the construction in [Katz] of the Cartier isomorphism, we obtain the desired result. O

Let (£,Ve) be an indigenous bundle on X'8. Let Hg : T — Txioz/g10s be the square
Hasse invariant of (£,Veg). Then by pulling back via ® yios/g10s and taking R'f, of He,
we obtain a canonical morphism:

@g N (le*TXlog/Slog)F — le*TXIOg/SIOE

which we shall call the Frobenius on le*TXmg/Slog induced by (£,Ve). On the other

hand, let us consider the dual morphism to Hg, that is, HY : wl;% — TV. Note that

TV @}/S( 1;(’%)}?. Thus, if we tensor HY with wx /g, we get a morphism

o lo
(wx%)m(—D) — wx/s ®ox @X/s(“’X%)F

log )F
X/5

we obtain a morphism (®x/g).(w l)gfs)‘g’z(—D) — ((wl)?fs)@Q(—D))F. Then applying f. to

If we then compose this morphism with the trace morphism tre o tensored with (w ,

this morphism, we obtain:

(g:f*(wl)?%s)@m( D) — (fu(w 1)?%5) (_D))F

which we shall call the Verschiebung on f*(wl)?’fs)@(—D) induced by (£,Ve). Observe
that by Serre duality applied to the morphism f, we obtain that the vector bundles
I (wl)?%) ?(=D) and R! f,Tx10x /g10x 0n S are dual to one another. Then relative to this

duality, we have

Proposition 2.12. The morphisms ®¢ and P are dual to one another.
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Proof.  This follows immediately from duality theory. Namely, the duality between
f*w?ﬁs(—D) and R f,7x10s /sts is obtained by cup product, followed by the trace mor-

phism try : R! Jswx/s — Og. On the other hand, since trace morphisms behave well
under composition, we see that try = (tr f)F otre, g This fact, combined with the fact
that ®7 (respectively, ®¢) is obtained from Hg (respectively, HY), implies the result. O

We are now ready to state and prove the second main result of this Section. Consider the
Verschiebung on indigenous bundles defined in the first subsection of this Section. In the
universal case, it was a morphism

Vgr:Sgr — Qg

over Mg,r. Thus, it induces a map on tangent bundles over Mg,»,.:

— — . — — — — N
@VQ,T'/MQ,T‘ GSQ,T/MQ,T @Qg,'r‘/Mg,T‘

If we pull-back to the point of gg,,« defined by our particular (£, Ve), we get a morphism

OF : fu(wiis)®*(=D) = (fe(wyss)**(=D)F

Then we have the following result:

Theorem 2.13. Let (£,V¢) be indigenous on X'°8. Then the infinitesimal Verschiebung
morphism @g is equal to PE.

Proof. First, let us recall Jacobson’s formula (see, e.g., [Jac|, pp. 186-187): This formula
states that if @ and b are elements of an associative ring R of characteristic p, then

p—1
(a+b)P =a”+"+ > si(a,b)

=1

where the s;(a,b) are given by the formula:

(ad(ta + b))P~(a) = Z isi(a,b)t' !

computed in the ring R[t], where ¢ is an indeterminate. In our case, we wish to apply this
formula in the case where a = € o, &« € R, and € is an element of the center of R such that
€2 = 0. In this case, substitution yields:
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(a+Db)P =P + (ad(b))’a

To prove that @g = &%, it suffices to do a local calculation on X to show that the
infinitesimal change in the trace of the square of the p-curvature is given by —2 ®¢. We
work over the base S[e]/(e?). Let Vi = Ve + ¢ 0, where 6 is a section of f, (wl)?fs)@’z(—D),
be a connection on £ that makes it an indigenous bundle. Let U C X be an open subset
that avoids the marked points and at which f is smooth. Let z be a local coordinate on U.
Write V (respectively, V’; 0,,) for V¢ (respectively, Vi; 0) applied in the direction O def %.
We wish to apply the above formula in the case where b = V and a = ¢ 6,. We thus
obtain that the infinitesimal change in the p-curvature is given by (ad(V))?~16,. Now the
infinitesimal Verschiebung is obtained by multiplying this term by the constant term and
then taking the trace (and multiplying by —1). Put another way, minus the infinitesimal
Verschiebung is obtained by applying P¥ to (ad(V))P~'6,. Since P is horizontal, it
commutes with ad(V), so we find that:

(@)1 (P¢02) = (9)" ' ((P£0) - 9)

is the section of ®% / S(wlj?f S)F obtained by evaluating minus the infinitesimal Verschiebung

(which is a section of @}/S{((wl;’fs)@Q)(—D)}F) at OF. Thus, to complete the proof of
the Theorem, we must show that

(@)1 (PE0) - 0) = =0 {(C @ 1)(PEO) - 07}

Now let ¢ be a horizontal, locally generating section of ®% / S(wl;g%)F . Write PY0 =v -,
where v is a section of wx,g. Substituting, we see that it suffices to show that:

(O (- )- ¢ = —B34(C) - 97) ¢

If we then divide out the (’s, we see that really (just as in [Katz2], (7.1.2.6)), we are
reduced to proving a simple identity concerning differentiation in characteristic p. Indeed,

if we regard the equation as an identity in v, both sides are @D}}S(’)Xp—linear in v and

vanish when v is exact; thus, we are reduced to proving the identity:

0P~ (zP~1) = —C(aP1dz) - OF

which follows from the definition of C' and the fact that (p — 1)! = —1 in characteristic p.

O
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Differential Criterion for Admissibility

We maintain the notation of the previous subsection. In the previous subsection, we
computed the relative differential map of the Verschiebung morphism V, , over M, .. In
fact, however, with a little more preparation, the same calculation allows us to give an
explicit representation of the differential map of the Verschiebung over F,. Moreover, this
explicit representation allows us to give a differential criterion for an indigenous bundle to
be admissible, which is also necessary if the bundle is nilpotent.

Consider the affine bundle Q, , — . M, . Since by definition, this bundle is the pull
back by the Frobenius morphism on M, , of a bundle over M, ,., it follows that we get
. : — - —1
a natural connection Vg on this affine bundle Q,, — M, .. Let ngﬁ be the log stack

. . - -1 .
obtained by pulling back to Q,, the log structure of M g(jf. Next, let us consider the
canonical exact sequence of tangent bundles on @g,r3

0—9g, . /,, ~ Oges = Ogpslg,, — 0

Thus, our connection Vg induces a splitting

@@lgof - ®§g,r/mg,7' @ @m;% |§ga7‘

Now let us consider the “full” infinitesimal Verschiebung, i.e., the morphism induced on
tangent bundles by V, ,:

@ng . @ggm — @@g’r

On the one hand, we know what the projection of ©3;  to @ﬂlog ]5 is. Thus, we would
g,r g,r g,r

like to compute the projection of O3 to O5 S, We shall soon see that, in fact, we
g, g, g,7
have already computed this projection as well, in the course of proving Theorem 2.13.

Suppose (as in the previous subsection) we have a log scheme S'°¢ with an r-pointed
stable curve of genus g, f'°8 : X'°¢ — S8 and an indigenous bundle (£,V¢) on X8,
Then the first relative parabolic de Rham cohomology module R! fpg .(Ad(€)) (as in
Chapter I, Theorem 2.8) is naturally isomorphic to the pull-back to S'°% (via the classifying
morphism for {X'°¢ (£, Ve)}) of Ozi0s. On R! fpr .« (Ad(E)), we have a Hodge filtration

0= fu(wyFs)®*(=D) = R for,«(Ad(E)) = R faTxiosgios — 0

where the surjection in the above exact sequence is exactly the pull-back to S'°% of the
rojection Oziog — O—iog |z -
proj Shee ng@;‘sw
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On the other hand, consider the p-curvature of Ad(E): Pg : T — Ad(E). Then by
applying “R! fpgr .” to the dual of Pg, we get a morphism

R' fpr.«(Ad(€)) — R fpr«(T")

Now by Poincaré duality, we have

R' for,«(T") 2 {R' for.«(T)}"

Moreover, we computed R! fpr .(7) in Proposition 1.1. In particular, we have a natural
inclusion R! f, (x5, giox) ! — RYfpr.+(7). Thus, if we compose the above morphism
induced by Py with the dual surjection to this natural inclusion, we obtain a natural
morphism

O : R' for,- (Ad(€)) — (f.(wy55)®*(=D)"

Then we have the following result:

Theorem 2.14. Let (£,V¢) be indigenous on X'°8. Then the pull-back to S°% of the
projection of @Vg to @mlog is gwen by the surjection in the Hodge filtration; the pull-
s T g r

back to S8 of the projectioﬁ of ©3 1o OF /M s given by O¢.
g,r g,m 9,7

Proof. It remains to prove the statement about the projection to 5 /M . To do this
g,T g,

we consider an infinitesimal deformation of (€, V¢) over S'°8[¢]/(e?). But the section of
(fu(w l)?% 5)®%(—=D))¥ that we obtain can be computed locally on X. Moreover, locally on
X, this calculation is exactly the same as that of Theorem 2.13. This proves the result. O

Corollary 2.15. Let (£,V¢) be indigenous on X'°8. If O¢ is surjective, then (£,Ve¢) is
—log

—l
admissible. In particular, if the morphism Vgoﬁ : Sy

the classifying morphism S'°% — glgo,i for (E€,Ve), then (£,V¢) is admissible.

—l
— ngj s log étale at the image of

Proof. Since being admissible is an open condition it suffices to prove the result when §

is the spectrum of an algebraically closed field. If V . is log étale, then by Theorem 2.14,
O¢ must be surjective. Thus, it suffices to prove the ﬁrst statement. Suppose that (€, Vg)
is not admissible. Thus, the morphism PY : Ad(£) — 7" has a nonempty zero locus.
One can compute the p-curvature explicitly at a marked point (where the monodromy is
nonzero and nilpotent); it follows that the zero locus does not contain any marked points.
Now there are two possibilities: the zero locus either avoids the nodes or it does not.

Let us first do the case where the zero locus of Pg avoids the nodes. Since Pg is
horizontal, its zero locus must be the pull-back of some closed subscheme via ® y,g. Thus,
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in particular, there exists some point * € X (which is neither a marked point nor a

node) such that PY is zero at @;(} ¢(x) (the scheme-theoretic fiber). By the definition of

Og, it follows that the image of O¢ lands in the subspace V, of HY(X, (wl)(g%)m(—D))F

consisting of sections that vanish at x¥". Now by Riemann-Roch on curves, V, cannot be
all of HO(X, (wl)?fs)@(—D))F, unless g = 0 and r = 3, or g = 1 and r = 1. This completes
the proof (under the assumption that P¢ avoids the nodes), except for these two special
cases. For g = 0, r = 3, we shall show in the subsection of §3 on totally degenerate curves
that the unique indigenous bundle on such a curve is necessarily admissible. (One checks
easily that there are no vicious circles in the reasoning.) For ¢ = 1, r = 1, we note that
P (&, V¢) is necessarily invariant with respect to the automorphism a given by multiplying
by —1. Thus, if we pull-back by the morphism X — X given by multiplying by 2, it is
still invariant under «. Hence it descends to the four-pointed curve of genus zero Y98 of
which X'°¢ is a log étale double covering. Let us call this descended bundle P(F,V £).
Thus, P(F,V ) is indigenous on Y'°8. It is easy to see that ©¢ and ©F are the same
morphism; thus, the hypothesis holds for P(F, V), as well. Thus, we reduce to the case
g =0, r =4, which has already been checked.

Now let us consider the case where 77;:/ vanishes at a node v € X. Let 7198 : Zlog

X8 be the partial normalization of X'°8 at v (where the log structure on Z'°¢ is such

that the points mapping to v are marked points). Let (F, V) def 7(€,Ve). Now let us

consider the commutative diagram:

HI(X, TXlog/Slog)F — H]:SR(XIOg,Ad((S,)) — H1<X, TXlog/Slog)

l l l

H1<Z, TZlog/Slog)F e HéR(ZIOg,Ad(f>), — I{l(Z7 TZlog/Slog)

where the vertical arrows are pull-backs via 7; the horizontal arrows on the left are induced
by Pg; and the horizontal arrows on the right are induced by the Hodge filtration. Finally,
the “prime” on the de Rham cohomology on the bottom row indicates that the we are
taking non-parabolic de Rham cohomology on Z'°¢ (since (F, V) may not even have a
natural parabolic structure, if (£, V¢) is not of restrictable type). Let n be a generator of
the kernel of H' (X, Tx1os/g10z) — H'(Z, Tz10s /g105). Let us consider what happens to n*
as we move it around the above commutative diagram. Since Pg is zero at v, if we move it
along the top to H' (X, Tx1os /g0 ), We get zero. Thus, its image in Hi g (X8, Ad(E)) lies in

HO(X, (Wy5)®2(=D)). But the pull-back map Hpy (X'%, Ad(E)) — Hpp(Z'°%, Ad(F))

maps HY(X, (wl)?%S)Q@Q(—D)) injectively into HY(Z, (wlzo/gs)®2). Going around the other

way, however, (i.e., going down and then to the right), we see that the image of 7’ in
H}r (2%, Ad(F)) is zero. We thus conclude that the image of n" in Hjg (X985, Ad(£))
is zero. But this contradicts the surjectivity of ©g¢, since the upper horizontal morphism
on the left-hand side of the above diagram is dual to ©¢. This completes the proof. ()
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Conversely, let us suppose that (£, Ve) is nilpotent and admissible. Then we claim
that O¢ is necessarily surjective. Indeed, for simplicity, it suffices to prove this when S
is the spectrum of a field. Let K be the kernel of Py : Ad(§) — TY. Note that the
connection on Ad(E) restricts to a connection Vi on K. Thus, (K, V) is an FL-bundle.
Also, we have a horizontal exact sequence:

0—-7 —-K—-0x—0

in which the connecting morphism Og — R! fpr_.(7) must be injective (since (K, Vi) is
an FL-bundle). Moreover, it is a tautology that the composite of this morphism Og —
R! fpr «(7) with the projection R! fpg (7)) — Og of Proposition 1.1 is the identity. Thus,
we see that the morphism R!f,(7x1os/g106)" <= R! fpr«(7) — R! fpr,«(K) is injective.
Now let C = Ad(E)/7. We have a connection V¢ on C, induced by the connection on
Ad(E). Thus, we get a horizontal exact sequence:

0—-0x —-C—->T"V =0
in which the connecting morphism ( f*wl)?%S)F — R!fpr.+(Ox) must be injective (since
otherwise, C would admit two horizontal, generically linearly indendent sections, which
contradicts the fact that the p-curvature is nonzero). Lastly, we consider the horizontal
exact sequence:

0—-K—AdE)—TY—0

in which the composite of the connecting morphism ( f*wl)?%)F — R fpgr.«(K) with the
projection R! fpr . (K) — R!fpr..«(Ox) is injective, as we observed above. Since the
image of R f,(Txoe /g10)" € R! fpr «(K) under the map R! fpgr.(K) — R! fpr «(Ox)
is zero, it thus follows that if we compose the inclusion R! f, (7x10z /5102 )" C R fpr +(K)
with the morphism R! fpgr .(K) — R! fpr «(Ad(E)), the resulting morphism

R f.(Tx1085005)" — R for,«(Ad(E))

is injective. But this morphism is dual to ©¢. Thus, O¢ is surjective. This completes the
proof of the claim.

—1 — —
Let N gof, be the log stack obtained by pulling back the log structure on M goﬁ to Ng .

_ —l
Since Ny, is the zero locus of the Verschiebung, it follows that A i~

g, 18 log smooth over
F, at a point if and only if ©¢ is surjective. In other words:

Corollary 2.16. Suppose that (£,V¢) is nilpotent indigenous. Then it is admissible if
—log

and only ifﬁgﬂ« is smooth over F,, at the image of classifying morphism S'°& — g Jor

(€,Veg).
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§3. Hyperbolically Ordinary Curves

Often, in the literature, one speaks of a curve as being “ordinary” if its Jacobian is
ordinary. In fact, however, since the Jacobian only represents the “abelian part” of the
curve, it is in some sense more intrinsic to speak of a curve as ordinary if it is hyperbolically
ordinary in the sense defined below. Philosophically, this means that the Verschiebung on
indigenous bundles is a local isomorphism in a neighborhood of an indigenous bundle that
provides a “nice” uniformization for the curve. Thus, relative to the analogy (explained in
the Introduction) between the Verschiebung on indigenous bundles and the Beltrami equa-
tion, to be hyperbolically ordinary means that the Verschiebung acts (at least locally) as
one might expect from this analogy, given the classical results on existence and uniqueness
of solutions to the Beltrami equation.

Basic Definitions

Let S° be a fine noetherian log scheme over F,. Let fl°8 : X8 — Glog he an
r-pointed stable curve of genus g (so 29 — 2+ r > 1). Let D C X be the divisor of
marked points. Let (£, V¢) be an indigenous bundle on X'°8. Let Pg : T — Ad(€) be its
p-curvature. Recall the Frobenius on le*TXlog/Slog induced by (€,Ve):

(I)E : (le*TXIOg/Slog)F - ]-:{'lf>i<7—XIOg/S'10g

that we defined in §2.
Definition 3.1. We shall call (£, V¢) ordinary if ® is an isomorphism.

Note that the condition of being ordinary is an open condition on ggyr. We shall denote

this open set by EZTS .
Proposition 3.2. If (£,V¢) is ordinary, then it is admissible.
Proof. This follows a fortiori from Corollary 2.15. ()

The following definition is key to the entire paper:

Definition 3.3. We shall say that f1°8 : X'°8 — §1°¢ is a hyperbolically ordinary curve if
there exists an étale surjection 7' — S and a nilpotent, ordinary indigenous bundle (€, V¢)
on X8 xgT.
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When the context is clear, we shall simply say that f1°% is an “ordinary curve.” The reason
for the descriptive “hyperbolically” is that in the literature, the term “ordinary curve” is
frequently used to mean that its Jacobian is ordinary. In this paper, when f'°% has an
ordinary Jacobian, we shall say that ¢ is parabolically ordinary.

Proposition 3.4. If the fiber of f1°8 : X'98 — 198 oyer s € S is hyperbolically ordinary,
then there exists an open set U C S with s € U such that f'°%|y is hyperbolically ordinary.
In particular, f'°8 : X8 — S8 45 hyperbolically ordinary if and only if all its fibers are
hyperbolically ordinary.

Proof. Indeed, it suffices to consider the universal example. Recall that Ny, C S, is the
locus of nilpotent indigenous bundles. Write 7 : N’ gr — Mg,r for the natural projection.
Let n € Ny ,; let m € M, be the point m(n). Then it follows from Theorem 2.13, plus
the definition of A/ g.r as the zero locus of Vg,r that if n is ordinary, then m must be étale
at n. Thus, 7 is open at n. This completes the proof. ()

We shall denote the open subscheme of Mg’r (respectively, N g,r) consisting of hyper-
——ord
bolically ordinary curves (respectively, nilpotent, ordinary indigenous bundles) by M, .

. —rord , .
(respectively, szr). Thus, we have a natural étale surjection

ord

N Yy v

ord
g,

. —oord , .
Finally, let us note that over SZTT, we have an étale local system in F-vector spaces

of dimension 3g — 3 + r obtained by taking the sections of @mlog \gord that are invariant
g,r g,r

under the Frobenius action on ©fzioc [gora given by —®F. (Note the minus sign in front of
9,7 g,r

—®7! It will be important later in Chaﬁter I11.) Let us denote this local system by ©¢

g.1
. . word . . . . .
and call it the tangential local system on SZ’T. Similarly, by taking its dual Qf]fr we obtain
ord
g.r
shall be interested in the restrictions of these local systems to N .

a local system on S, .. which we shall call the differential local system on 3;1:;1 . Often, we

The Totally Degenerate Case

In this subsection, we show that totally degenerate curves are hyperbolically ordinary.

.- . . ——ord . Wi .
By Proposition 3.4, this will show that MZ’T is an open dense subscheme of M, ,.. Since
totally degenerate curves have no moduli, there is no loss of generality in assuming that
S = Spec(F,). We begin by considering the case g = 0, r = 3. Recall the morphisms

constructed at the end of Chapter I, §3:

—log _

N M1,1[2] — My

)
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(parametrizing elliptic curves with level structures on the two-torsion points) and

Al°g Mlﬁ 2] — M0,4

which takes an elliptic curve to the four-pointed curve of genus zero of which it is a
. . . -1 .
double covering. Then in this case, we have Moii = X8 Let us construct a nilpotent,

admissible indigenous bundle on M:)Oj. Since X'°& has only one indigenous P!-bundle
(up to isomorphism), this will complete the proof of Corollary 2.15. To do this, we note
that (as we saw in Example 3 of Chapter I, §2), the first de Rham cohomology module of

the universal elliptic curve over Hlloﬁ [2] defines an indigenous vector bundle (£, V). Let
(P — X,Vp) be the associated P!-bundle. Now since the map “multiplication by —1” on
an elliptic curve induces the map “multiplication by —1” on &, it follows that (£, V¢) will
not descend via A. However, since “multiplication by —1” induces the identity on P — X,
we see that (P — X,Vp) does descend via A. This gives us an indigenous bundle on
X'°& To see that it is nilpotent and admissible, it suffices to see that (€, V¢) is nilpotent
and admissible. But by (a rather trivial special case of) [Falt], Theorem 6.2, as a de
Rham cohomology module, (€, V¢) necessarily forms an MFY-object (see Definition 2.9).
Thus, Proposition 2.10 tells us that (€, V¢) is nilpotent and admissible. In particular, this
completes the proof of Corollary 2.15.

Now let us assume that f18 : X1°8 — S8 is formed by gluing together a number of
copies of the 3-pointed stable curve of genus zero (as in the last subsection of Chapter I,
§2). Then, as we saw in this final subsection of Chapter I, §2, we can glue together the
nilpotent, admissible indigenous bundles that we constructed in the previous paragraph
to obtain a nilpotent, admissible indigenous bundle (P — X, Vp) on X'°8. On the other
hand, by Proposition 2.8, every nilpotent, admissible indigenous bundle on X'°& is of
restrictable type. Since there is (up to isomorphism) only one indigenous P!-bundle of
restrictable type on X'°8 it thus follows that:

Proposition 3.5. Up to isomorphism, a totally degenerate r-pointed stable curve of genus
g admits one and only one nilpotent, admissible indigenous P*-bundle.

Next, let us consider the cohomology group H'* (X, Txt08 / g0 ) Of our totally degenerate
curve. If X!°8 is obtained by gluing together various copies X;Og of the 3-pointed stable
curve of genus zero, let Y1°8 be the disjoint union of the X%Og, and let 198 ; Ylog _, Xlosg
be the natural map. Let 0 — Txios/g108 — UV Tytog/510s — C — 0 be the natural exact
sequence (where C is defined so as to make the sequence exact). By considering the long
exact cohomology sequence associated to this exact sequence of sheaves, we see that we
obtain a natural isomorphism H'(X, Txs/g0s) = H?(X,C). On the other hand, C is
naturally isomorphic to the direct sum of the (Tyios/g10¢)|2, Where z ranges over all the
nodes in X. Moreover, the residue map gives a natural isomorphism Txios/, gos], = Og
(well-defined up to sign). Let ¥ be the set of nodes of X. Then
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C=@p (0s)-

where the subscript “z” is just used as a marker, to indicate which copy of Og one is
referring to. Thus, we have a natural isomorphism (well-defined up to sign on each factor):

_Hl(X, TXlog/Slog) g @ (Fp)z
z€X

In particular, since F), has a natural bilinear form (given by ring multiplication F, x F, —
F,), using this bilinear form on each factor (F)), gives a natural bilinear form:

B: H' (X, Txwe gi06) X H' (X, Txos s g106) — F

which is now independent of all arbitrary choices of sign.

Proposition 3.6. For every totally degenerate r-pointed curve of genus g, there is a
natural nondegenerate bilinear form B on the Og-module le*TXIOg/Slog which takes values
m Os.

Next we would like to show that the unique nilpotent, admissible indigenous bundle
(P — X,Vp) on X'°¢ is ordinary. To do this, we must compute the induced Frobenius
action on H' (X, Txiox /gi0x). By using an isomorphism as above

H' (X, Tx10s 5106) = P (Fy)-
ZED

we see that it suffices to compute the induced Frobenius action on the various (F)).’s.

Consider P|,. The Hodge section ¢ : X — P defines a point o, € P|,(F,). On the other
hand, there is a unique point fixed by the monodromy action ¢, € P|,(F,). If we think of
P as P(J/JBl) (as in Chapter I, Proposition 2.5), then (J/JB)), =V, @ V,, where V,
(respectively, V;) is the subspace defined by o, (respectively, ¢.). Note that by the residue
map, we have natural isomorphisms V, = F, and V, = F,. Thus, we obtain a basis
{(1,0); (0,1)} of (F/TBN).. Let E, and E, be the nilpotent endomorphisms of (7 /7).,
given, respectively, by the matrices

0 1 0 0
and
0 0 1 0
Thus, E, is essentially the p-curvature of (7 : P — X, Vp) restricted to z. Sorting through

all the definitions, it thus follows that the induced Frobenius action on (F)), is given by
multiplication by tr(E, - E,) = 1. We thus obtain the following result:
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Proposition 3.7. On a totally degenerate r-pointed stable curve X'°% of genus g over F,,
the Frobenius action ®% on H'(X, TXlog/Slog) induced by the unique nilpotent, admissible
indigenous bundle on X'°% is the identity. In particular, this unique nilpotent, admissible
indigenous bundle is ordinary, and so is X'°8.

Corollary 3.8. The open subschemes Mfo C Mg,r and N;;ﬁi - Ng,r are nonempty.
The Case of Elliptic Curves: The Parabolic Picture

One can get a better feel for ordinariness for general r-pointed stable curves of genus
g by first studying ordinariness for elliptic curves. In the case of elliptic curves, there are,
in fact, two possible theories of ordinary bundles and curves: the parabolic theory and
the hyperbolic theory. Indeed, let f1°8 : X108 — §log he a 1-pointed stable curve of genus
1, with marked point € : S — X. Let Y% be the log scheme obtained from X'°& (as
in the subsection “The Infinitesimal Verschiebung” of §2) by removing the marked point.
Then the parabolic theory (respectively, hyperbolic theory) is obtained by considering the
various properties of the p-curvature of indigenous bundles on Y'°¢ (respectively, X'°8).
So far in this Chapter, of course, we have only been considering the hyperbolic theory.
However, since the notion of an indigenous bundle is defined for Y8 one can consider
its p-curvature, and define the notions of a nilpotent indigenous bundle, or an admissible
indigenous bundle, just as before. Also, many of the results (though not all) such as
Theorem 2.3 (where we replace the “3g — 3 + r” by 1) continue to hold in the parabolic
context. The purpose of this subsection is to summarize what happens when one studies
elliptic curves from the parabolic point of view, and to show, in particular, that the notion
of ordinariness that we have defined in this paper (in terms of the p-curvature of indigenous
bundles) reduces to the classical notion of ordinariness of elliptic curves.

. . . -—! Wi, . .
First, we introduce some notation. Let Mﬁ% = ./\/llo’%. (The point here is that we

. -1 c . .. .
shall use the notation ME% when we are thinking about elliptic curves from the parabolic
point of view.) Let f: G — Ml,o be the universal elliptic curve, with identity section

e: Mig—G. Let L= f*wg/ﬂl , be the Hodge bundle. Let G2 be the log stack whose
underlying stack is G and whose log structure is the pull-back of the log structure on Mlﬁﬁ.

Let 31,0 — Ml,o be the torsor over £%? of Schwarz structures on G'°8. Then just as before,
we can define a Verschiebung:

Vio:S1,0 = Q1,0

Just as before we have a closed subscheme N1 g C 81 consisting of nilpotent indigenous

bundles, and an open subscheme giéom C 81,0 consisting of admissible indigenous bundles.
Also, just as before, we define an indigenous bundle to be ordinary if its infinitesimal Ver-
schiebung is an isomorphism, and we define an elliptic curve to be (parabolically) ordinary
if it admits a nilpotent, ordinary indigenous bundle.
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Now recall that in Example 2 of Chapter I, §2, we constructed a canonical indigenous
bundle on G'°¢. This indigenous bundle thus defines a global section 75 : Ml,o — 31,0
which trivializes the £L%2-torsor S1 9 — Mj . Moreover, by [KM], p. 227, one knows that
if p > 5, then HO(HLO, L5?) = 0, so this trivialization is unique. Let us also recall that,
in the definition of the indigenous bundle (£,V¢) in Example 2 of Chapter I, §2, we had
a subbundle 0 ® Og C w & Og = & (where w = wy /ﬂl,o) which was stabilized by the
connection Vg. Moreover, the induced connection on Og was the trivial connection. Put
another way, £ admits a nonzero horizontal section. It thus follows that the p-curvature
of V¢ is nilpotent. Thus, 75 : ﬂl,o — 31,0 lands inside N1,0~

Let 6 be a section of £%? over some étale V — Ml,o- Let Vg be the connection
formed by adding to V¢ the endomorphism given by

E=wPOg -0 w2 (W)W ERDwW
where the first morphism is the natural projection; the second morphism is multiplication
by 6; and the final inclusion is the natural one. Let § be a section of £ over V which is
everywhere nonzero. Thus, the sections ¢ and 1 define a global trivialization of £ = w& Og
over Gy. We shall write sections of €|y in terms of this basis, given by § and 1. Write

0 = ¢ - 6%, where ¢ is a function on V. Let V¢ be the morphism £|y — &|y given by
evaluating V% on 6=!. Then we see that VY is given by the following matrix:

(1 o)

To obtain the p-curvature of Vg, we must iterate this matrix p times. This yields the

matrix:
0
¢%(p—1) . ¢
1 0

Now let us write 677 = h- 6! (so h is the classical Hasse invariant). Thus, to compute
the p-curvature of Vg, we must subtract from the matrix just given the following matrix:

(i o)

Thus, we obtain that the p-curvature of V% is given by:

(¢%(p—1)_h).<0 ¢)
1 0
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If we then take the determinant, we obtain our Verschiebung (applied to (67)?):

—p (32D )2 = P 4 2R 2@t _ 2. ¢

Let us 1 rewrite this in invariant form. The trivializati_on Ts of 31,0 — ﬂl,o allows us to
write S0 as Spec(@®;>0L®2"). On the other hand, Q; ¢ is given by Spec(®;>oLZ "),
Thus, V1 o is determined by specifying the morphism of quasi-coherent sheaves:

Iy : L% EB Lo

i>0

Let us denote the component of I'y, that maps into £L&~2¢ by Fgﬁ] : LO72P 5 L8721 Gince

L is ample, it follows that ng] = 0 when i > p (as we saw already in the proof of Theorem
2.3). Let x € T'(My,0,LP™ 1) be the Hasse invariant (as in [KM], p. 353). Then we see
that we have proven the following result:

Theorem 3.9. Ifi = p, then Fgﬁ] is multiplication by —1. If i = %(p + 1), then I‘%ﬁ]
18 multiplication by 2 x. If 1 = 1, then l"gi] is multiplication by —x?. For all other i,
rli = o.

In particular, this completes the proof of Theorem 2.3.

Corollary 3.10. Geometrically, N'1o consists of two irreducible components I; and Zs:
One, 14, is the section 7s. The other, Iy, is nonreduced, and (Z3)req may be described as
follows: In [KM], p. 361, one finds a description of the Igusa curve Ig(p), with its canonical
(Z/pZ)* -action. Then (Z2)rea is the quotient of Ig(p) by the subgroup {£1} C (Z/pZ)*.

In order to see which nilpotent bundles are ordinary, we must compute the derivative
of the Verschiebung map. In terms of the local objects we used in the computation above,
we obtain that “dV/d¢” is given by:

h(qg%(p*l) —h)

In particular, if h = 0, then the infinitesimal Verschiebung is identically zero, while if
h # 0, then the infinitesimal Verschiebung at 7s is nonzero. Moreover, because of the
square factor in the expression for the Verschiebung, we see that if h # 0, then the only
nilpotent indigenous bundle at which the infinitesimal Verschiebung will be nonzero is the
indigenous bundle given by 7s. We thus obtain the following:

Theorem 3.11. An elliptic curve is parabolically ordinary if and only if it is ordinary
in the classical sense (i.e., its Hasse invariant is nonzero). If it is ordinary, then the
digenous bundle constructed in FExample 2 of Chapter I, §2, is the unique nilpotent,
ordinary indigenous bundle on the curve.
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The Case of Elliptic Curves: The Hyperbolic Picture

In this subsection, we consider 1-pointed stable curves of genus 1 as hyperbolic objects.
In particular, we shall highlight the numerous contrasts with the parabolic viewpoint
presented above. We begin by considering the torsor 31’1 — Ml,l' Recall that this
torsor has a canonical trivialization at infinity, defined by the unique nilpotent, admissible
indigenous bundle on the singular 1-pointed stable curve of genus 1 (Proposition 3.5). Let
us suppose that our prime p is > 5. Then it follows from Chapter I, Theorem 3.6, that
S 1,1 — ./\/l1 1 does not admit a section which passes through the canonical trivialization
at mﬁmty Now let us consider the closed subscheme A 11 € S 1,1. By Theorem 2.3, the
natural morphism A/ 1,1 — ﬂLl is finite and flat of degree p. Let us consider the irreducible
component Z C N ; which passes through the canonical trivialization at infinity. Then
7T is generically reduced. Moreover, the degree of Z — M 1 must be > 2. This behavior
already is substantially different from the parabolic case, where the irreducible component
passing through the unique nilpotent, ordinary indigenous bundle at infinity has degree
one over M, 0. Thus, in particular, N 1,1 (respectlvely, V1 1) is not isomorphic to AN 0
(respectively, V; 0) despite the fact that as stacks, M; 1= ~ M, 03 31 1285 0 Q1 120, 0-
Since N'1,1 — M 1 has degree p, it follows that there exist points of N1 over the mﬁnlty
point of /\/l1 1 at Whlch N 11— /\/l1 1 is not étale. Such points correspond to nilpotent
indigenous bundles which are not adm1551b1e (by Proposition 3.5). This fulfills our earlier
pledge to show the existence of such bundles. Of these various observations, we record the
following for later reference:

Proposition 3.12. If p > 5, then the irreducible component of N'11 passing through the
canonical trivialization at infinity is generically reduced and has degree > 2 over M ;.

The Generic Uniformization Number

We return to the case of an r-pointed stable curve of genus g, where r and g are
arbitrary (but satisfy 2g —2 4+ r > 1). Suppose we are given the combinatorial data A (as
at the end of Chapter I, Secion 2: consisting of a graph I', plus \;’s, etc.) for a totally
degenerate curve. We shall call two collections of such data A and A’ equivalent if they
define isomorphic totally degenerate curves. Let us denote by D, , the equivalence classes
of such data A. Alternatively, one may think of D, ,. as the set of isomorphism classes of
totally degenerate r-pointed stable curves of genus g. Now let us consider the morphism:

Ngn“ — Mg,

We know that it is finite, flat, and of degree p39=3*". If A € D, ., consider the irreducible
component Za of N g, that passes through the unique nilpotent, admissible indigenous
bundle (as in Proposition 3.5) on the curve corresponding to A. Then Za is generically
reduced. Let Ga be the degree of Zan over Mg’r. We shall refer to Ga as the generic
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uniformization number for the data A. (The reason for attaching the term “uniformization”
to this number will become apparent in later Chapters.) Let

Ggr= > Ga

A€ED,,,

Now let us suppose that p is sufficiently large so that the class X (Chapter I, Theorem 3.4)
in H' (M, Qﬂlog) is nonzero. Then we have the following rough result:
g,r

Proposition 3.13. For g > 3 and p sufficiently large, the number Ga is between 2 and
3g—3+r
P .

Proof. The upper bound follows from the fact that N/ g = Mg,r has degree p39=3+". On
the other hand, since N/ g — Mgm is finite, and Mg,r is normal, it follows that if Za had
degree 1 over ngr, it would, in fact, be isomorphic to Mg,r, hence define a section of ggm
over M, ,. By Chapter I, Theorem 3.4, we know that this is impossible, for p sufficiently

large. O

It is not clear to the author how far these bounds are from being sharp. For instance,
it could be the case that N, is, in fact, irreducible. To compute the number G a exactly
would involve understanding the monodromy around curves that are not hyperbolically
ordinary. That is to say, it would involve proving a sort of hyperbolic analogue of Igusa’s
theorem on the monodromy around supersingular elliptic curves in the parabolic case.

It is interesting to know, however, that GA # 1 because this constitutes a depar-
ture from the behavior of complex indigenous bundles. To see this, we must first explain
certain aspects of the analogy between the complex case and the characteristic p case
treated here. First of all, the condition of being nilpotent (and ordinary) is analogous, in
the complex case, to having real monodromy. Indeed, to be nilpotent (and admissible)
is (by Proposition 2.10) the same as coming from an MFY-object in the sense of [Falt].
But to be an MFVY-object means, essentially, that the bundle with connection admits a
Frobenius action, i.e., that the monodromy is Frobenius-invariant. Since the Frobenius
at the infinite prime is complex conjugation, it is thus natural to regard nilpotent (and
admissible) bundles as the characteristic p analogue of complex indigenous bundles with
real monodromy. On the other hand, in the complex case, within the real-analytic space
of complex indigenous bundles with real monodromy, there is a canonical, topologically
isolated component, corresponding to the indigenous bundle arising from the uniformiza-
tion by the upper half-plane. On the other hand, in the characteristic p case treated here,
the fact that Za has degree > 2 over Mg,r means that there is no canonical choice of a
nilpotent, ordinary indigenous bundle, even on a generic curve: since the monodromy at
the curves which are not hyperbolically ordinary is nontrivial, one such indigenous bundle
is always carried around to another.
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Chapter III: Canonical Modular Frobenius Liftings

§0. Introduction

The present Chapter is central to the entire paper. In it, we construct a canonical

. p —~rord . .. .
Frobenius lifting on (N 28 and a canonical indigenous bundle on the universal curve

over (N ng )log This pair of a canonical Frobenius lifting and a canonical indigenous
bundle are uniquely characterized by the fact that, relative to this Frobenius lifting, the
renormalized Frobenius pull-back (Definition 1.4) of the canonical indigenous bundle is
equal to itself. In some sense, an ordinary (in the sense of Definition 1.1) Frobenius lifting
is like a p-adic analogue of a Kéhler metric on a complex manifold in that it gives rise
to local canonical coordinates. Since there are a number of general properties of ordinary
Frobenius liftings that we will need throughout the rest of the paper, we give a basic
exposition of the properties of such Frobenius liftings in the first Section of this Chapter.

The main result is that such a Frobenius lifting defines canonical affine and multiplicative

ord
log
g ) 08 defines such

. . —~7ord . ~rord . Wi . . .
canonical coordinates on N, .. Since N, is étale over My, if one thinks of a point

coordinates. Thus, in particular, our canonical Frobenius lifting on (A

of N ;ff as a point of M, ., together with a choice (from a finite number of possibilities)
of some added structure — which we call a p-adic quasiconformal equivalence class — then
we obtain the result that for every choice of a p-adic quasiconformal equivalence class, we
obtain a canonical local uniformization of M, ,.. The reason for the name “quasiconformal
equivalence class,” is that once one chooses this piece of data for a curve, we shall see
in this Chapter and in following Chapters that the uniformization theory of the curve is
entirely determined. This is reminiscent of Bers’ approach (as in [Bers]) to proving that
hyperbolic curves can be uniformized by the upper half plane: Namely, he proves that (in
the complex case) all hyperbolic curves with the same genus and number of marked points
belong to the same quasiconformal equivalence class. Thus, once we choose this class in
the p-adic case, we obtain a “covariant” uniformization by the affine space modeled on
the tangent space to M, at the curve in question. To obtain uniformizations by the
quadratic differentials (as in the complex case), we need more information than just the
quasiconformal equivalence class. Namely, we need a topological marking of the curve.
Once we define this, we obtain uniformizations by the quadratic differentials.

The canonical Frobenius gives rise to another natural notion, for which I know no
parallel in the complex case: a canonical lifting of a curve over a perfect field to the ring of
Witt vectors with coefficients in that field. This is reminiscent of the canonical lifting of an
elliptic curve in Serre-Tate theory. In fact, this analogy is more than philosophical: Just
as in Chapter II, by using indigenous bundles on elliptic curves — regarded parabolically —
one can obtain a similar uniformization theory, involving a canonical Frobenius lifting (on
the moduli stack of ordinary elliptic curves) and a canonical indigenous bundle. We then
compute that these canonical objects for elliptic curves are precisely the canonical objects
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that one obtains from classical Serre-Tate theory. Thus, one may regard the theory of
uniformizations and canonical liftings discussed in this Chapter as the natural hyperbolic
analogue of Serre-Tate theory.

§1. Generalities on Ordinary Frobenius Liftings

Let k be a perfect field of odd characteristic p. Let A = W(k), the ring of Witt
vectors with coefficients in k. Let S be a formally smooth, geometrically connected p-adic
formal scheme over A of constant relative dimension d. Let S°% be a log formal scheme
whose underlying formal scheme is S and whose log structure is given by a relative divisor
with normal crossings D C S over A. Let ®4 : A — A be the Frobenius morphism on A.
Let us denote the result of base changing by ®4 by means of a superscripted “F.” Let
Plos : Glos , Glog he a Frobenius lifting, i.e., a morphism whose reduction modulo p is the
usual Frobenius morphism in characteristic p. In this Section, we shall study the case of
a certain kind of Frobenius lifting, called an ordinary Frobenius lifting. It turns out that
such Frobenius liftings define various types of canonical parameters. It is these canonical
parameters that will constitute the various “uniformizations” that we obtain in this paper.

Basic Definitions

Let us consider the morphism

log . * 10 lo
dP'E : DO, — QL

induced by ®'°% on logarithmic differentials. It is always divisible by p.

Definition 1.1. We shall call '8 : §log — §log an ordinary Frobenius lifting if 11) . dPlos :

@*Qg’fA — ng}gA is an isomorphism.
We shall use the notation

* lo lo
Qp : O QS/gA — QS/gA

to denote the isomorphism % -d®'°s. Note that by considering the sections of ngf ", Which

are invariant under {0, we obtain an étale sheaf Q§ in free Z,-modules of rank d on S.

Definition 1.2. We shall call Q' the canonical differential local system on S associated

to ®'°¢. We shall call its dual ©% the canonical tangential local system on S associated to
q)log.
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Moreover, by taking the sections of QS to be horizontal, we obtain a natural connection
Vq on le?/gA which is associated to ®'°5. Note that since QS is an étale (not just log étale)
local system on S, the connection Vg, is a connection on S with respect to the trivial log
structure, i.e., it has no logarithmic poles at D.

The Uniformizing Galois Representation

Now we would like to associate to ®!°¢ a canonical “uniformizing MJFV-object” (where
we use the category MFY in the sense of [Falt], §2) as follows. Let

lo
P=0Q S/gA ® Og
We regard P as being filtered by taking the filtration

F2(P) < 0; F'(P) = Q&0 C Py FOP) = P

Let Vp be the logarithmic connection on P obtained as follows: We start with the connec-
tion V’» on P which is the direct sum of the trivial connection on Og and the connection

Vq on ng/gA. Then we add to V’ the End(P)-valued logarithmic differential given by
P — Q};’fA ~ (03 Og) Ros Qfg/gA C P R0 ng/gA

where the first morphism is the projection on the first direct summand. The resulting
logarithmic connection on P will be called Vp. Note that the Kodaira-Spencer morphism
for F'*(P) C P with respect to Vp is the identity map. Next, we define the Frobenius
action on P as follows: We take the Frobenius action to be the morphism Pg : ®*P — P
which is diagonal with respect to the direct sum decomposition P = Qg’/gA @ Og and is
equal to ! on Og and to d®'°% on QISO;T’A. One sees easily that this Frobenius action Pg
is horizontal with respect to Vp. Note that this implies that Vp is integrable, since its
curvature would define a Frobenius-invariant section of (ng/g )Y ®og A2 ng/g 4> but Plog acts

on this bundle with slope 1, so any Frobenius-invariant section must necessarily vanish.
Thus,

(P,F(P),Vp,Ps)

defines an MY -object in the sense of [Falt], §2.

Definition 1.3. We shall call this MJFV-object the uniformizing MFY -object on S8
associated to P8,
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Now choose a base point s : Spf(A) — S that avoids D. Let Ilgios = Wl(S}?g,sK),
where K is the quotient field of A, and by the fundamental group of “S'°2,” we mean the
fundamental group of the open formal subscheme which is the complement of divisors that
define the log structure. Then by the theory of [Falt], §2, the uniformizing MFY-object
on 5'°¢ defines a dual crystalline Galois representation

Pet

Of Hslog .

Definition 1.4. We shall call this Galois representation the uniformizing Galois repre-
sentation on S'°% associated to ®'°8.

Note that Og = (0 ® Og) C P is stabilized by Vp and Pg, and thus defines an MFV-
subobject of the uniformizing object which is equal to the trivial MFY-object. If we take
the quotient of the uniformizing MZFY-object by this subobject, we obtain the MFY-
object corresponding to the étale Galois representation ©%, Tate twisted once. Thus, we
have an exact sequence of Ilgiog-modules

0— OF (1) = Pey — Zp — 0

which thus defines an extension class:

ne € H' (Igix, 05 (1))

We remark relative to the analogy between Frobenius liftings and Kahler metrics, that the
class ng formally “looks” somewhat like the differential form that defines a Kahler metric.

Also, we can define a ring with Galois action which will be useful later. First consider
the symmetric algebra on Q§ (—1) over Z,:

Sz, Y (-1)
Let us consider the Galois action of Ilgies on this symmetric algebra which differs from
the direct sum of the actions on the S* (Q5'(—1)) by the class ne. Thus, in other words,

Spec of the symmetric algebra with this Galois action parametrizes sections of the exact
sequence

O—>@(§I)t(1)—> et—>Zp—>O

If we then adjoin the divided powers of the augmentation ideal to this Z,[IIg..]-algebra,
we obtain a Z,-algebra Ag. Let T'°® — S1°8 be the finite covering given by ®!°% (so
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T'8 =~ §log)  Since this finite covering is log étale in characteristic zero, we may form the
subgroup Il7is C Ilgoe corresponding to this covering. Then one sees easily that we have
a natural Il7ieg-action on Ag, compatible with the I1giog-action on the symmetric algebra.
(We need to restrict to Il so that the Galois action respects the divided powers.)

Definition 1.5. We shall call ng the canonical Galois extension class associated to ®1°8.
We shall call Ag the ring of additive periods of ®'°8.

The Canonical p-divisible Group
Let us look at the uniformizing MFY-object

(P, F'(P),Vp,Po)
again. Let U C S be the open formal subscheme which is the complement of the divisor
U. Then by [Falt], Theorem 7.1, this MY -object defines a p-divisible group Gg over U.

Moreover, just as with the corresponding Galois representation discussed in the previous
subsection, we have an exact sequence of p-divisible groups over U:

0— @‘:ﬁ(l) ¥z, Qp/zp — Gop — Qp/zp —0

Definition 1.6. We shall call G¢ the canonical p-divisible group associated to ®'°8.

Now let w € Qf be an element whose reduction modulo p is nonzero. Thus, w defines
a Z,-linear morphism

w(=): 05 — Zy
Let S;, — S be the étale covering defined by taking the kernel of the morphism Ilgie —
GL(OY ® Z/p"Z). Let U, — U be its restriction to U. Then over U, w(—) ® Z/p"Z will

be Galois equivariant, so that, by pushing forward the above exact sequence by means of
w(—), we obtain an exact sequence of finite flat group schemes:

0—-2Z/p"Z(1) — Gy — Z/p"Z — 0
which, by Kummer theory, defines an element
Uy n € (U, Oén)/F(Un, O;}n>p"

and thus a differential
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w;z = (duw,n)/uw,n € F(Unv QUn/A ® Z/an)

Now let n — oo. Let S be the p-adic completion of the inverse limit of the S,,. Since the
various w/, are compatible, we thus obtain a differential

W e T(U, Q)
Now we would like to claim that w’ is none other than the original differential w that we
started out with. In some sense, I believe that this fact is well-known, but I do not know
of a clear reference for this fact, so I will prove it explicitly here. First, however, we need
to make a few more general observations concerning Gg. The proof will be given in the
subsection after the next.

Logarithms of Periods

Suppose that k is algebraically closed, and let z : Spf(A) — S be a rational point
whose reduction modulo p is equal to the base point s. In particular, it follows that z
maps into U, and factors canonically through U (since it coincides with the base point s
modulo p). Thus, we can restrict the G, ,, to Spec(A) via z so as to obtain an extension

0= Qp/2Zp(1) = Guz = Qp/Zp — 0

of p-divisible groups over Spec(A). By Kummer theory, this extension defines a unit

Uy » € A”

whose image in the residue field £ is 1.

On the other hand, we can consider the Dieudonné crystal E, of G .. Thus, E,
is a free A-module of rank two with a filtration F'(E,) C E,, and a Frobenius action
®p : EFY — E,. This Frobenius action has a unique subspace Er C E,, (respectively,
Ey C E,) on which Frobenius acts with slope zero (respectively, one). Also, Ey and
FY(E,) define the same subspace modulo p. Since F*(E,) and E/F(E,) are naturally
isomorphic to A, in the future, we shall identify them with A. Thus, by projection Ep —
E, — E,/FY(E,) = A, we obtain a natural isomorphism of Er with A, and, dually,
a natural isomorphism of Ey with A. Finally, since E,, = Fr @ Ey, we may regard
FY(E,) C E,, as the graph of an A-linear morphism A = Ey — A = Ep, which, by means
of the various canonical trivializations, gives us an element L, , € p - A.

Theorem 1.7. We have L, . = log(u,, ).
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Proof. Let us denote the sequence of Galois modules which are the p-adic Tate modules
of the above exact sequence of p-divisible groups by 0 — W% — W — W' — 0. Recall the
exponential map of [BK], p. 359, Definition 3.10,

exp: FI(E,)® 7?2 A — A = H,y(Z,(1))

where the first isomorphism is the trivialization referred to above, and Héal denotes Galois
cohomology with respect to Gal(K /K), where K is the quotient field of K. By [BK], p. 359,
Example 3.10.1, one knows that this exponential map is equal to the ordinary exponential
map defined by the exponential series. Let 1y = log(uy, »); 11 = exp(n2).

Now we diagram-chase. Let us denote by P the (infinite dimensional) Galois module
Beys' ' @ Bpr " (notation of [BK]). Applying the exact sequence (1.17.1) of [BK] to the
exact sequence of Galois modules 0 — W° — W — W' — 0, we obtain the following
commutative diagram:

Hgal(WO) - Hgal(W) - Hgal(Wl) - Héal(WO)

l l l l

Hgal(WO ® P) - Hgal(W ® P) - H(O}al(Wl ® P) - Héal(WO ® P)

| l | l

Hg, (W°®Bpr) — HQu(W®Bpr) — H,(W'®Bpr) — H{,(W° @ Bpr)

Now we have an element 1 € HQ,, (W) which maps via the connecting homomorphism to
m € HE,;(W0); since the image of iy in HY,;(W°®P) is zero, we can consider log(n;) = n2.
On the other hand, 1 € HZ_ (W) maps to an element n3 € HY,,(W! @ P) that dies when
hit with the connecting homomorphism to H},;(W°®P). Thus we see that 73 comes from
an element 7y € HY,,(W ® P) which is unique modulo H2,,(W° @ P). Mapping 74 down
one step to H,,(W ® Bpr), we get n5 € HZ,;(W ® Bpr) that dies in HQ,, (W' @ Bpr),
hence comes from a unique ng € HS,,(W° ® Bpr)/H2,,(W° @ P) = TV. Now it follows
from the explicit definitions of the maps in the sequence (1.17.1) of [BK] that g is precisely
L, .. On the other hand, it follows from general principles of homological algebra that
ne = n2. This completes the proof. O

Compatibility of Differentials

Now we return to the issue of showing that w’ = w. Let us begin by observing that w
can also be defined as follows. By taking the direct limit of the G|, ,,’s restricted to U, we
obtain an extension of p-divisible groups

0—Q,/Zy(1) = Gy — Qp/Zy — 0

95



over U. This, moreover, defines a Dieudonné crystal (€, V) with a filtration F1(&) C &,
and Frobenius action. In fact, (£, Ve) is obtained from (P, Vp) simply by pulling back
0 — Os = P — Qga — 0viaw : O — Qgalz. Now FL(&) and £/FY(€) may
be identified with Op. Thus, w is precisely the differential obtained by considering the
Kodaira-Spencer morphism

FY&) =0~ —Q

5= O (E/FYE) = 9

U/JA

Now let R, be the complete local ring which is the completion at z of U. Let REP be
the p-adic completion of the PD-envelope of R, at the augmentation ideal R, — A defined
by z. Now taking the inverse limit of the u,, ,’s defines a unit

Uy € (RED)X

whose image in the residue field k is 1. Thus, we can consider log(u,,) € REP.

On the other hand, let P, = P(2*€) = P(E,,). Let op : S — P, (respectively, oy :
S — P.) denote the section determined by the subspace Er C E,, (respectively, By C E,).
The trivializations discussed previously define an isomorphism of the tangent space to P,
at op with A. Thus, in summary, we get an isomorphism 1 : P, = P! by sending op
(respectively, o) to infinity (respectively, zero) and using the trivialization of tangent
space to o to remove the remaining multiplicative ambiguity. Let Prro = P(€)[gpe(rrp)-
Then V¢ gives an isomorphism

—_ ~ pPD
op PRZPD =R, ®aP,

which, when composed with ¢, gives an isomorphism p : Pgrep = P}%PD. Now by Theorem
1.7, it follows that the Hodge section (defined by F1(£) — &)

o Spf(RSD) — PRED = P}%PD

is (in terms of the standard coordinate ¢t on P!, which vanishes at zero and has a pole at
infinity) simply log(uy). (Indeed, Theorem 1.7 tells us that this is true after restriction
to any A-valued point of RLP; hence it must be true over REP.) It thus follows that the

pull-back of the differential dt on P! via o is simply w’ ot du,, /u,. But, tracing through
all the definitions, the pull-back of dt via the Hodge section is exactly the Kodaira-Spencer
morphism of the Hodge filtration. Thus, we conclude that w = w’ over REP. On the other

hand, it is clear that this implies that w = w’ over all of U (since Oy — RPPD is injective).
Thus, we have proven the following

Theorem 1.8. We have w = duy, /u, = &' over U.
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Note that this holds (by descent) without the assumption that k is algebraically closed.
Canonical Liftings of Points in Characteristic p

Let ay € S(A) be an A-valued point of S. Suppose we apply ® to a3 to obtain an
A-valued point 3, € S(A). Then since ® is a Frobenius lifting, it induces zero on the
morphism on cotangent spaces modulo p. Thus, 31(mod p?) depends only on a;(mod p).
Let ay = ®*(31). Thus, as = a;(mod p), and as depends only on a;(mod p). If we then
continue in this fashion, defining

def L _
aip1 = D, P(ay)

it is clear that a;; = aq(mod p) for all i > 1, and that the sequence {«;} of points in S(A)
converges p-adically. Let a,, € S(A) be the limit of this sequence. Let ag € S(k) be the
reduction of ay modulo p. Note that we have

D) = O‘fo

and that, moreover, a,, is the unique A-valued point of S which has this property and is
equal to ag modulo p.

Definition 1.9. We shall call a, the canonical lifting of ag. We shall call an A-valued
point of S which is a canonical lifting of some k-valued point a canonical A-valued point

of S.

All the canonical extensions that we have defined become trivial when restricted to a.
More precisely,

Proposition 1.10. If ag € U(k), then the restriction of uy, to o is 1.

Proof. Indeed, the Hodge filtration of P is invariant under ®, so its restriction to aq,
is still Frobenius invariant. By the theory of filtered Dieudonné modules with Frobenius
action over A = W (k), it thus follows that the extension of p-divisible groups that one
obtains is trivial. Thus, by Kummer theory, u,|qo., = 1. O

Canonical Multiplicative Parameters

Let us assume just in this subsection that k is algebraically closed. Let z € S(k) be
a k-valued point of S. Let SX¢ be the completion of S'°% at z. Thus, S'°% is Spf of a
complete local ring R, which is noncanonically isomorphic to
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Allt1, ..., td]]
with the restriction of the divisor D defined by ¢ - t5 - ...-t; (where ¢ may be zero). Then
if we restrict Q5 to S°8 we obtain the trivial local system.

Let w € QF have integral residues at all the irreducible components of D, and nonzero
reduction modulo p. Thus, w defines a surjection

w(—) : @fpt — 7,

If we apply w(—) to our canonical extension of p-divisible groups
0— @%t(l) Rz, Qp/Zp — G — Qp/Zp —0

we obtain an extension of Q,/Z, by Q,/Z,(1) over U, et S.|v. By Kummer theory, we
thus obtain a “logarithmic unit”

1
qW7zeRz[t_,... _]X
1

which is well-defined up to multiplication by a Teichmiiller representative of an element of
k. If w has residue e; at the component of D defined by t;, then the valuation of ¢, . at
(t;) is equal to e;. Indeed, this follows from the formula dgq,, ./q.,. = w (of Theorem 1.8).

Next, let us consider ®~!(q, .). Since ®~! multiplies dq, ./qw . = w, as well as the
canonical extension of p-divisible groups by p, it follows that ®~!(g, .) = A- q?, ., for some
A € [k*] (where the brackets mean “the Teichmiiller representative of”). On the other
hand, because ® is a Frobenius lifting, reducing modulo p shows that A = 1. Thus, we
have that

(I)il(q%z) = qg,z

Definition 1.11. We shall call g, . for such an w a canonical multiplicative parameter
associated to ®1°8.

Canonical Affine Coordinates

In this subsection, k need not be algebraically closed. Let a € U(A) be canonical.
Let A% be the p-adic completion of the PD-envelope of S at the subscheme Im(«). Let
€ + AY — A be the augmentation that defines the point a. Let Z = Ker(e,). The
A-algebra structure, together with the augmentation €, define a splitting
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AY=Aq¢T

which we shall call the augmentation splitting of A%*. Note that we have an A-linear
Frobenius action

@A:(Aa)F_)Aa

induced by the Frobenius lifting ®. Moreover, ® 4 preserves the augmentation splitting,
as well as the ring structure of A“.

Let us consider the slopes of this Frobenius action ® 4. Clearly, ® 4 acts on AG0 C A~
as ® 4. Next, we note that since ® 4 is a Frobenius lifting, it maps Z into p - Z. Thus, we
have

CIDA(IU]) Cp -7l

where the superscript in brackets denotes the divided power. By the definition of an

ordinary Frobenius lifting, €2, def 7 /T 2] has constant slope one. Thus, if we divide ® 4

restricted to 2, by p, we obtain an isomorphism

(Qa)F — Qg

Next, let us consider the A-submodule Q" C 7 which is the closure (in the p-adic
topology) of the intersection of the images of (% -®4|7)N (for all N > 1). Since Z/Z1?! has
slope 1, it is clear that the projection Q" — €, is surjective. Now let us consider the
intersection of Q" with 712, Let ¢ = (% - ®4|7)N (1), where 1 € Z. If ¢ is contained in

72 modulo p", then since Z /T 2] has slope 1, it follows that ¥ must also be contained in
72 modulo p"V. But then ¢ = (% -®_4|7)N () must be zero modulo p?. Thus, we conclude
that the projection 2" — €, must be an isomorphism. Inverting this isomorphism, we
thus get a canonical morphism

Ka:Qy — A

Let S“ be the formal scheme which is the p-adic completion of the PD-envelope in S of
the image of a € U(A). Let O, be the dual A-module to .. Let ©*T be the p-adic
completion of the PD-envelope at the origin of the affine space modeled on ©,. Thus, ©2f
is Spf of the p-adic completion of the PD-envelope of the symmetric algebra (over A) of
Q. at the augmentation ideal. We may then reinterpret the canonical morphism k4 as an
isomorphism

YD - @Zﬁ — S«
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We thus see that we have proven the following result:

Theorem 1.12. For every choice of a canonical o € U(A), we obtain a local uniformiza-
tion (canonically associated to ®)

Ucanr . szf o~ qo
of S by the affine space modeled on ©,,.

Definition 1.13. We shall call the elements of the image of k4 canonical affine parameters
associated to ® at .

Now let (B,mp) be a local ring with residue field & which is p-adically complete and
has a topologically nilpotent PD-structure on mp. Let § € S(B) be such that f(mod mp) €
S(k) is equal to a(mod p) € S(k). Let S” be the p-adic completion of the PD-envelope of
S ®4 B at the image of § in S(B). Thus, S® = S*®4B. Let B® = A*® 4 B. By tensoring
the canonical morphism x4 constructed above with B, we thus obtain a morphism

kgt () S () ®4 B — B°

Let €5 : B — B be the augmentation corresponding to the point 8 € S(B). Let Zg =
Ker(3). Let

B’ = Ba I,

be the splitting defined by eg and the B-algebra structure on BB. Let us consider the
projections of kg on these two factors:

k% (o) — B; kg (Qa)s — Ip
Let Q3 = IB/IE]. If we compose k1 with the projection to 3, we thus obtain a morphism

Uos: (Qa)p — Qp

which is an isomorphism, since it is an isomorphism modulo mg, where 3 coincides with
a(mod p). Let ©4 the dual B-module to Q5. Now we may regard % as an element
of (O4)p; if we apply (\IIZ/B)_l, then we get an element of kg € ©g, hence € mp - Og

(since €5 = (€4)p modulo mp). On the other hand, if we compose r} with \Il;é, we get a
morphism Qg — B which gives us an isomorphism
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U’ eyt — g8

In summary, we have proven the following result:

Theorem 1.14. For every f € S(B) as above, we obtain a canonical class kg € mp - Opg,
as well as a local uniformization

U’ ey = v

of S by the affine space modeled on ©g. Moreover, this uniformization is related to the
canonical uniformization by tensoring over A with B, applying the isomorphism

(Tap) ™" (Ba)B — O

and then translating by kg. Finally, for all § € S(B) whose reductions modulo mp are
equal to a(mod p), the correspondence 3 — kg is a bijection of such 3 onto mp - ©g.

Proof.  All the statements except the last follow from the way we constructed the ob-
jects involved. The last statement about the bijection follows from simply evaluating the
canonical uniformization of Theorem 1.12 on B-valued points. ()

Finally, we remark (relative to the analogy between Frobenius liftings and Kéhler
metrics) that these canonical affine parameters are like canonical coordinates for a real
analytic Kahler metric.

The Relationship Between Affine and Multiplicative Parameters

Let us continue with the notation of the preceding subsection, but let us assume in
addition that k is algebraically closed, so that the canonical multiplicative parameters are
defined. Let w € QY have integral residues at all the irreducible components of D, and
nonzero reduction modulo p. Since QF C Q,, we may also regard w as an element of
Q. Then we would like to establish the relationship between the canonical multiplicative
parameter ¢, , and the canonical affine parameter k4 (w).

First note that by Proposition 1.10, g, o evaluated at « is a Teichmiiller representative.
Thus, log(qw,a) € A% is zero at a, as is ka(w) € A*. Moreover, d log(gw,..) = w, by
Theorem 1.8. On the other hand, the fact that d ka(w) = w is a tautology. Thus,
log(¢w,«) and x4 (w) have the same derivative and both vanish at a. We thus obtain the
following result:
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Theorem 1.15. We have k4(w) = 10g(quw,o) in A®.

§2. Construction of the Canonical Frobenius Lifting

In this Chapter, we shall denote by /\/llgO’f the p-adic formal stack of r-pointed stable

curves of genus g over Z,,. We shall denote the reductions of objects over Z,, to F, or Z/p?Z
—ord

by means of a subscripted F,, or Z/p*Z. Let (N, ), — (Mg, )r, be the étale morphism
. C . ——ord . . c

in characteristic p of Chapter II, §3. Thus, (N Z,T>Fp parametrizes pairs consisting of an
r-pointed stable curve of genus g in characteristic p, together with an ordinary, nilpotent

. 9. ——rord - . , . .
indigenous bundle. Let N zfr — M, be the unique étale morphism of p-adic formal

o ord
schemes that lifts (A ;fr

. . ,rord . . . .
over Z, whose reduction modulo p is (N (g)fr )F,- Our goal in this Section is to construct a

vl —~rord . .
)r, — (Mgy,)r,. Thus, N Sfr is a smooth p-adic formal scheme
canonical ordinary lifting of Frobenius on N gfﬁ :
Modular Frobenius Liftings

In this subsection, we reinterpret certain constructions from Chapter II, §1, in terms of
liftings of the Frobenius morphism on (Mg, )r,. Let S — (Mg, )r, be étale, and let 5™

—1
be the log scheme obtained by pulling back the log structure of M gofi. Thus, in particular,
S is smooth over F,. Let ®guos : S — S be the absolute Frobenius morphism.

Since (ﬂg,r)Fp C (My,r)z/p2z is defined by a nilpotent ideal, the étale morphism S —
r)F ‘ I M r)Z/p2Z- 8
(Mg, )r, lifts naturally to an étale morphism S — (Mg, )z/2z. We let S'°8 be the

log scheme obtained by pulling back the log structure of (Mg, )z/p2z. We shall call a

Frobenius lifting on Slog 4 log morphism Slos _, Glog whose reduction modulo p is equal
to @gies. Note that by assigning to étale morphisms U — S the set of Frobenius liftings

on U8, we obtain a sheaf £ on the étale site of S, with the natural structure of a torsor

over @qs’log def PLOgi0e, where O g0z is the dual vector bundle to the sheaf of logarithmic

differentials on S'°&. Moreover, this torsor naturally admits a connection V, as follows:
Consider the sheaf of bianalytic functions Ogni on S°8. The image Z3 of the Frobenius
morphism ®gui : Ogni — Ogui is equal to iL(CIJEIOS), as well as to Z'R(<I>§1(’)5) (where
ir,ir : Og — Ogni are the left and right injections). Thus, the pull-back of the sheaf
L by either iy, or ig is equal to the sheaf of liftings of Zj to a Z/p®Z-flat subalgebra of
Og,- This gives a connection V, on the @glog—torsor L — S which is compatible with

the natural connection on ©%,,, (for which sections of 'O gus are horizontal); also, one

checks easily that V. is integrable.

Now let us recall the @glog-torsor D — S that we defined in Chapter 1I, §1. Let
flog . xlos — G108 he the pull-back to S'°% of the universal curve over (ﬂ;%)pp. Recall
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then that D is the ©%,,-torsor consisting of liftings of the curve (X'8)F = X'o8 x 108D 10

Slog _, Glos 5 an S-flat curve Y'°8 — S8, Note that it follows immediately from the
.- - -1 - .,

definition of the classifying log stack M gofn (plus the fact that S — M, , is étale) that we

have an isomorphism

a:D— L

of @glog—torsors given by considering the classifying map of the lifting ylos _, Glog (which
is, by definition, a Frobenius lifting on S$'°8). On the other hand, the theory of Chap-

ter II, §1, gives a natural connection Vp on D — S as follows. Recall the line bundle

T (@Xlog/slog)*(Txlog/slog)F on X2, By declaring the sections of the Txlog /glos inside

the definition of 7 to be horizontal, we see that 7 gets a natural connection V7 over X8
(i.e., not just in the relative sense for f1°& : X1°8 — §l°8) Thus, the de Rham cohomology
module R! fpgr .(7) has a Gauss-Manin connection Vg on S By Chapter II, Propo-
sition 1.1, we have a natural surjection R! fpr +(7) — Og, which one verifies easily to be
horizontal. Since, by Chapter II, Proposition 1.2, D is just the sheaf of sections of this
surjection R! fpr «(7) — Os, it thus follows that, as such, D gets a natural connection
(induced by Vawm), which we shall call Vp.

Proposition 2.1. The isomorphism « is horizontal with respect to Vp and V.

Proof. Let us denote by X (respectively, X®) the pull-back of f°& : X8 — §log yia
ir, 1 Os — Ogu (respectively, ig : O — Ogni) to SP. Thus, we obtain a diagram over
Shi:

XL<—Xbi—>XR

Let us denote the left-pointing (respectively, right-pointing) arrow by 7y, (respectively, 7R ).
Similarly, we have an analogous diagram with tildes, for the various objects over Z/p?Z.
Now consider the image of Frobenius Z3 C Ogri. We also have the image of the absolute
Frobenius on X, which we denote by Zg& C Oyui. Note that Zg actually sits inside both
Oxr and Oxr.

Suppose next that we are given a Z/p?Z-flat subalgebra f;g - (’):vai that lifts Zg. This
corresponds to a section 1 of LY = LR, (Here the superscript “L”’s and “R”’s denote
left and right pull-backs to SP! respectively.) The obstruction to lifting 7y to a Z/p*Z-

flat subalgebra of O, compatible with 73 defines a class in RY(fL),(T%), which is, by

definition, equal to &[L] et (a)~1(n). Similarly, we obtain a class £[R] &t (@®)~1(n).
Note that (7m1,) *(£[L]) = (7r) 1 (£[R]), since both classes are the obstruction to lifting
ZX to a Z/p*Z-flat subalgebra of O v compatible with Z3. Let us call this common class

&[bil.
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Now suppose that (Z’ )3 C OgzisaZ /p*Z-flat lifting of Z5. Suppose that this lift-
ing corresponds to a section ¢ of £. If we then take n = (" (in the previous para-
graph), we get &[bi] = (m0) (a7 1(¢))*}, and, similarly, if we take n = (R, we get
¢bi] = (mr) " H(a71(¢))®}. On the one hand, Vp(a~1(¢)) is computed by subtracting
these two £[bi]’s. On the other hand, (by the definition of the ©%,,-torsor structure on
D) the difference between these two {[bi]’s is the difference between the two classifying
morphisms given by the subalgebras {(Z')$} and {(Z')$}® of Ogu. But this difference

is, by definition, V(¢). This completes the proof. O

Henceforth, we shall identify (D,Vp) with (£,V,), and call the resulting torsor with
connection (D, Vp) (since the notation £ is more natural for line bundles).

Indigenous Sections of D

We continue with the notation of the previous subsection. Thus, S — Mg,r is étale,
and we have the @glog-torsor D — S, with its connection Vp. Let m : D — S be the
scheme corresponding to this torsor. Thus, D is a twisted version of Spec of the symmetric
algebra of the dual of @glog. We endow D with the log structure pulled back from S; this
gives us a log stack D'°8. On D, taking the dual to the second fundamental exact sequence

for differentials gives a sequence of tangent bundles:

P
O_>9510g|D —)@D1og —)@Slog|D — 0

where O . is the logarithmic tangent bundle on D'°8. We shall denote the surjection
O pioe — Ogiee|p by O,. The connection Vp then defines a connection Vp on the fiber
bundle 7 : D — S, hence a section Vg : Ogiog|p — O prog of O.

Now let us suppose that we are given a section ¢ : S — D of . Then ¢ induces a
section of 0*0O,, which we denote by O, : ©gioe — "0 p1og. Also, o defines an FL-bundle
(£,Ve) (see Chapter II, §1) on the curve X'°8.

Definition 2.2. We shall call the section o indigenous if the projectivization of the
FL-bundle on X°¢ defined by ¢ is an indigenous bundle on X%,

Let us assume that o is indigenous. Then we obtain, for ¢ = 1,2, canonical morphisms of
vector bundles

d)l . U*GDlog d @Slog
defined functorially as follows. By means of the étale morphism S — M, ., we can think
of the geometric vector bundle 0*© pie on S as parametrizing infinitesimal deformations

n' = {(X"8)" (£',Ve)} of the curve plus FL-bundle pair given by n = {X8 (£, V¢)l.
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Then the obstruction to lifting the Hodge filtration of (£’,Ve/)|x = (£, Ve) (which exists
since o is indigenous) to a filtration of £’ over X’ defines a section of © gios, which we take
for ¢2(n'). On the other hand, if we think in terms of crystals, then (£’, V¢/) also defines
a deformation (£”,Ven) of (£,Ve) on Xle]/(€?). The obstruction to lifting the Hodge
filtration of (£, Ve) to a filtration of £” on X[e]/(¢?) defines a section of © gis, which we
take for ¢1(n’). Since, 0*O(n’) is simply the difference between (X'°8)" and the trivial
deformation of X'°%, we thus see that

U*@w = ¢2 —¢>1

We also have that

$p100"°Ve =0

Indeed, sorting through the definitions, one sees that the image of Vg consists of the
n = {(X'"8) (£, Ve)} obtained by letting (', Ver) be the FL-bundle given by regarding
(€,V¢) as a crystal and taking the bundle with connection that this crystal induces on the
deformation (X'°8)". Thus, (£”,Ver) is simply the trivial deformation of (€, V¢), hence
is indigenous on X'°8 by assumption. Putting the above two formulas together, we thus
obtain that

200 Ve =ide

slog

Also, let us note that

¢2o®a:0

since if it were nonzero, it would measure exactly the extent to which o fails to stay within
the indigenous locus of D, but, by assumption, o does stay within the indigenous locus.

Next, let us recall the morphism % : @glog — Oglog, i.e., the dual to the “infinitesimal
Verschiebung” of Chapter II, §2. Recall that this morphism was constructed by applying
R!f, to the morphism 7 — Txlos /glos given by composing the p-curvature P : 7 — Ad(E)
of £ with the projection Ad(£) — Tx1s,g10s arising from the Hodge filtration. It thus
follows immediately from the definitions (by thinking about how one defines the obstruction
that ¢; measures) that if we restrict ¢1 : 0*O piog — Ogios to @glog C 0"Opog, We get

Piles, = P
slog

So far we have been thinking about morphisms that one can obtain from ¢ by thinking
about the indigenous FL-bundle (£, V¢) that it defines. But by what we did in the previous

subsection, o also defines a Frobenius lifting ®, : S8 — Slog Tet us consider the
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morphism Og_ : Ogox — OF gz Obtained by looking at the morphism induced by @, on
the tangent bundles and then dividing by p. On the other hand, the morphism ©,—0*Vg :
Ogloz — 0O oz maps into OF Gloz © 0O plos. Thus, by abuse of notation, we shall regard

O, — 0*Ve as a morphism O gz — O glog- Lhen we claim that

Op, = O, — 0"V

Indeed, if we think of 0*V g as defining a direct sum splitting of 0O piog, then O, —0*Vg
is just the component of O, that sits in the vertical subspace @g)log C 0*Opis. Put another
way, O,—0*Vg : Ogiog — @%log is the Kodaira-Spencer morphism for the section o relative
to the connection V. Thus, it follows from the definition of the connection called V. in
the previous subsection in terms of subalgebras of Ogni that O, = 0, — 0*Ve.

We are now ready to prove the main technical result of this subsection:

Proposition 2.3. If o : S — D is an indigenous section, then —®% is inverse to Og,. In
particular, the indigenous bundle associated to (£,V¢g) is ordinary.

Proof. Indeed, using the various observations made above, we simply compute:

£00g, =¢10(0, —0"Ve)
= ¢100,
= (¢1 — ¢2)0
=—(0"0,) 00,

= —ide .,

Thus, in particular ®F is an isomorphism, and so (€, Vg) defines an ordinary nilpotent
indigenous bundle. ()

Frobenius Invariant Indigenous Bundles

In this subsection, we change notatlon slightly. Let S — N be an étale morphism
of a p-adic formal scheme S into N . Thus, S'is formally smooth over Z,. Also, one may

think of S — ./\/0 as the unique etale lifting of its reduction Sy, — (N 2 d)F modulo

p. For Convenlence we assume that Sg, is affine. Endow S with the log structure pulled

back from ./\/l g Thus, we get a p-adic formal log scheme S log " Pulling back the universal
curve over ﬂgyr, we get a morphism f1°8 : Xlog — glog  Tet plog . ylog _, Glog he an
r-pointed curve of genus g whose reduction modulo p is equal to (X log)gp — Sll_;? pg, i.e., the

Frobenius transform of fllf pg. We shall denote the divisor of marked pointson Y by £ C Y.
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Let n > 2 be a natural number. Suppose that we have a coherent sheaf with connec-
tion (F,V£) on Y'°8 where F is killed by p™ and flat over Z/p"Z, and the connection
V£ is relative to the morphism A'°% : Y1°8 — Sl9g  SQuppose, moreover, that we are given
a filtration F*(F)p, C Fg, of the reduction of F modulo p. We shall call this filtration
the Hodge filtration. Then, relative to this data, we define the coherent sheaf with con-
nection F*(F,V £) as follows. First, we regard (F,V£) as a crystal on Crys(YPl(;g /St8),

Thus, if we apply the relative Frobenius morphism ® yios/g10s to this crystal (F,Vx), we
obtain a crystal (F,Vx)’ def D% 1og 10 (F,Vz) on Crys(Xi?f/Slog). Next, we consider
the subsheaf ®% FY(F)r, € Fp,. If we then consider the subsheaf of (F,Vz)’
on Crys(X;O f /S'°8) consisting of sections whose reduction modulo p is contained in the

Xlog/Slog
subsheaf @}log/slogFl(}")FP, we obtain a crystal (F,Vz)" on Crys(X]l;f/Slog). We then
let

F*(&,Ve) ¥ (F,V5) @z, Z/p" ' Z

Definition 2.4. We shall call F*(F, V) the renormalized Frobenius pull-back of (F,V x).

Note that if F is a vector bundle on Yz/,nz, and F'(F)g, is a vector bundle on Y , with
the injection F''(F ), — JFr, locally split, it follows immediately from the definitions that
the coherent sheaf F*(F) appearing in F*(F, V) is a vector bundle on Xz /,n-17. Note

also that, if we think of the “input variable” (F,V£) as a crystal on Crys(Y]_L(;g /S%°8)  then

F*(F,V£) does not depend on the choice of the deformation h'°8 : Y08 — Glo8 of Y;f;g.
lo lo
Z/gp"Z - SZ/gp"Z

will take YZ]C}%)”Z — Slzofpnz (respectively, (F, V£)) to be the pull-back of Xlzo/gpnZ — Slzo}gpnz

(respectively, some (£,Ve) on X'°8) by ®!°8, If S were the spectrum of the ring of Witt
vectors of a perfect field k, and n = 2, then the F*(£,V¢)¥ that we have defined here
would coincide with the F*(€, V¢) of Chapter II, Definition 2.9.

Often, we will be given a Frobenius lifting ®'°8 : S modulo p™, and we

Now let (F,Vx) be a vector bundle with connection on Yzl(;i ng Whose determinant

is trivial and which is indigenous modulo p"~!. We will denote its Hodge filtration by
F! (F)zjpm—12z € Fzpn—1z. Let us denote by (G, Vg) the vector bundle with connection
on Xz /,n-1z which is the renormalized Frobenius pull-back of (F,V#). Suppose, more-

over, that (G, Vg){.fp = (F,V#)r,. Thus, one sees (as in the proof of Chapter II, Propo-

sition 2.10) that (F, VF)p, is nilpotent and admissible (hence corresponds, by Chapter II,
Proposition 2.5, to some FL-bundle).

Lemma 2.5. Let n > 3. If we modify the connection V. by some p"~20, where 0 is a
section of h*(wg}gs)(m(—E), then the vector bundle F*(F) (on Xg/pm-17), along with its
connection ¥*(V ), remain unchanged.
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Proof. Looking at the definition of the renormalized Frobenius pull-back, one sees that
the pair (F*(F),F*(V£)) is constructed by pulling back F (and V) via various local
liftings of ®x10e /g10s, and then gluing together by means of gluing morphisms defined
by the connection V. Moreover, these gluing morphisms are obtained from the Taylor
expansion (cf. [Falt], §2, Theorem 2.3), which involves applying the connection V£ to
tangent vectors pushed forward from the Frobenius lifting. Since such tangent vectors are
necessarily divisible by p (as well as being annihilated, of course, by p™), it follows that
a knowledge of (Vx)z/,n-17 suffices to compute these Taylor expansions. Thus, certainly
F*(F) depends at most on (V#)z/pn-1z. On the other hand, since at the end of the
construction of F*(F), we mod out by p"~ 1 - @}log/slogFl (F)r, € pnt. Cb}log/slog.ﬁ:‘p,
we see that modifying V # by an endomorphism-valued differential whose image lies inside
p" 2. FY(F) (where we have p"~2 rather than p"~! since we always get an extra factor
of p from the fact that we are applying the connection to tangent vectors divisible by p)
does not affect the result. This completes the proof. ()

Now let us assume that (F, V) is a rank two vector bundle on Y7 ,,nz with a con-
nection (relative to hl°8 : Y18 — Gl°8) whose determinant is trivial. Let us suppose,
moreover, that (F,V )z pn-17 is indigenous. Let (G,Vg) = F*(F,Vz). As before, we
assume that (G, Vg)gp = (F,Vx)r,. Then by considering the result of applying F* to var-
ious deformations (F, V)" of (F, V) (i.e., such that (F,Vz)z/pn-17 = (F, V}')/z/pn—lz)
to obtain various deformations (G,Vg)’ of (G,Vg), we obtain a morphism:

(R for,«Ad(E)r,)" — R forAd(G)r, 2 R' for . Ad(E)F,

If we then compose this morphism with the projection

Rl fDR,*Ad(g)Fp - Rl f* (T_Xlog/slog)Fp

arising from the Hodge filtration, we obtain a morphism

(leDR7*Ad(5)Fp)F — Rl f* (TXlog/Slog)Fp
which, by Lemma 2.5, vanishes on the subbundle
(fe(@ ) **(=D))f, € (R for +Ad(E)r, )"
arising from the Hodge filtration. Thus, we obtain a morphism of vector bundles

@F* . (le* (TXlog/Slog)Fp)F — le* (TXlog/Slog)Fp

Note that by Lemma 2.5, this morphism remains unchanged if one adds some p”~26 to
the connection V £.
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Lemma 2.6. The morphism Op- is equal to —P%.

Proof.  In the gluing process referred to in the proof of Lemma 2.5, the deforming
cocycle in (Txiog /slog)gp = p" M (Tx0s 5102 )T (mod p™) only affects the Taylor expan-
sion to first order. Moreover, this cocycle in (7Tx1os, Slog)f;p is mapped to a cocycle in

}log/slog(Txlog/slog)gp — Ad(G)r, = Ad(E)F,, and hence to a cocyle in Ad(E)p,. If

p
we then further project this cocycle via Ad(€)r, — (Tx1os/g10s)F,, We obtain Op- of the
original cocycle. On the other hand, let us note that by Chapter II, Proposition 1.4, the
inclusion %16, /gio (Txlog/slog)f;p — Ad(G)r, = Ad(E)F, is —1 times the p-curvature of
(£,Ve)r,. Since ®F is defined by applying R!f, to the p-curvature composed with the
projection Ad(E)r, — (Txios 5105 )R, , We thus obtain the result. O

We are now ready to begin defining a canonical Frobenius lifting on S'°8, which will
be fundamental to the entire paper. First, note that since (Mg, )r, C (Sg,r)F,, we have a
tautological trivialization (7or)r, : (N g,r)%r;l — (Sg,r)F, of the torsor S, over (Nzrf )F,-
If we pull this trivialization back to S, we get a trivialization (75)r, : S¥, — (Sg.r)F,
which thus defines a nilpotent, ordinary indigenous bundle (£, V¢); on Xif pg. This indige-
nous bundle thus corresponds to an FL-bundle, hence a section of the torsor D (of the

. . log . olog log
previous subsection) over Sg,, and hence a Frobenius lifting 5, : S, Y Sy 027 Now

Z/ 25 that lifts (£, Ve)1. (Such a lifting exists

since Sg, is affine.) We shall define Y'og inductively. Let Yl(;gzz = Xlzo /gPQZ Stos, plos Slog.,

Let (F,Vz), = (BY8)*(E,Ve),. Then it is a tautology that if we take F*(F, V£)}, we
obtain (£,Ve)1 (up to tensor product with a line bundle with connection whose square
is trivial; as usual, for the sake of simplicity, we shall ignore this). So far, to summarize,

of the objects constructed so far, ®5%; Yzl(ﬁggz; and (£,Ve); are canonical. The primed

let (£,Ve)h be any indigenous bundle on X0

objects are not canonical.

Let (F,V )5 be any rank two bundle with connection on Y / sz Whose determinant

is trivial, and whose reduction modulo p? is equal to (F,Vr)5. That is, (F,Vr)s is a
deformation of (F, V)5 Now by Lemma 2.6, and the fact that (&, Vg)l is ordinary, it
follows that, among all possible deformations (F,V£)s of (F,Vx)h, there exists a unique
(up to changing the connection by some p? - 6) such deformation (F,Vz)j such that

F*(F,V )4 is indigenous on XZ/ 2y Let Ylo/ggz be the unique deformation of sz}gQZ

such that when one evaluates the crystal (F,V£)5 on Y} /g sz, it becomes indigenous.

Let (£,Ve)2 = F*(F,Vz)4. By Lemma 2.5, (£,V¢)s is independent of the choice of

(E,Ve)y or (F,Vz)i. Let (F,Vzr)y = (BY)*(E,Ve)a. Let B8 Sg/gp S;)/gpgz

the classifying morphism of the r-pointed stable curve of genus g given by Y / 3y = SZ IR
Thus, ®¢ lifts ®8. Again, to summarize, the objects ®L%; Yzlo/i sz and (€, Ve)a (as well
as (F,Vx)a) are canonical. If we now let (€, Ve)5 be an indigenous bundle on X lo/gpgz
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that lifts (£, Ve)s, and (F, V) = (B¥8)*(E, Ve)s (where the primed bundles are newly
chosen here, hence different from the temporary ones we chose before), it follows from
Lemma 2.5 that (£,Ve)2 2 F*(F,Vr)s.

Continuing in this fashion (making repeated use of Lemmas 2.5 and 2.6, as well as
the fact that (£,Ve); is ordinary), we thus obtain a canonical Frobenius lifting ®'°% :
Slos —, G108 (of p-adic formal schemes), as well as a canonical indigenous bundle (£, V)
on X'°8 such that F*(®'°8)*(£,Ve) = (£,Ve) (up to tensor product with a line bundle
with connection whose square is trivial). Moreover, note that by Proposition 2.3, this
Frobenius lifting ®'°¢ is ordinary.

Definition 2.7. Let W8 : §los _, Glog he a Frobenius lifting. We shall call an indigenous
bundle (G, Vg) on X'°¢ Frobenius invariant for W'°8 if (G, Vg) = F*(¥!°8)*(G, V) (up to
tensor product with a line bundle with connection whose square is trivial).

So far, we have been working over our affine scheme S, which is étale over M, .. However,
since the objects that we have constructed (namely, ®'° and (€,Vg)) are canonical, i.e.
uniquely characterized by certain properties that have nothing special to do with S, it is
clear that they all descend to (N ;ff )1°8. We thus see that we have proven the following
key result:

——ord . . . . cpy -
Theorem 2.8. On (N Zﬂn o8 there erists a canonical ordinary Frobenius lifting

(I)}\O/—g : (Nord)log N (N’Ord)log

g,r g,r

. . . . —ord .
together with a canonical indigenous bundle (Exr, Ve, ) on C'°8 (where C'°8 — /\/'Z’T is the
universal r-pointed curve of genus g) whose reduction modulo p is equal to the nilpotent,
ordinary indigenous bundle defined by the tautological trivialization (Tar)r, of Sy over

./Tf;ff. Moreover, the pair {(I)},?/g;<gN,V5N)} is uniquely characterized by the following
properties:

)1°8 is a lifting of Frobenius;

(1) ®RE - (Worp)'s — (Ng

gr gr
(2) the reduction of (Enr, Ve, ) modulo p is the bundle defined by (Ta)r,,

(3) (Enr, Ve ) is Frobenius invariant for befg.

Moreover, the formation of @ffg and (Enr, Ve, ) is compatible with restriction to products

——ord . .. —ord .
of N;}r ’s for smaller g’s and r’s that map into the boundary of our original N;r via the
gluing procedure described at the end of Chapter I, §2.
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Proof. We have proven everything except the last statement about restriction. To see
ord

g Since it respects the
)

this, note first of all that @ffg respects such products of smaller A/

.. —~7ord .
log structure of the original A ;’,,. Thus, we may restrict @ffg and (En, Ve, ) to these
products, and the result follows by uniqueness. ()

Remark. This result is the central result of this paper. In some sense, the rest of the paper
is just devoted to making explicit a number of formal consequences of Theorem 2.8. In
particular, since this canonical Frobenius lifting is ordinary, it follows that we can apply
the theory of §1. We shall proceed to do this in the remainder of this Chapter.

Finally, it is useful to know that the formation of the canonical Frobenius and indige-
nous bundle are compatible with finite coverings. Suppose that S°¢ — (A fo,l )log s log
¢tale, with S formally smooth over Z,, and the log structure given by a relative divisor
with normal crossings over Z,. Let f°8 : X8 — G198 he the pull-back of the universal
curve over Mii. Let g, s > 0 be such that 2¢ —2+5s > 1. Let Y'°8 — §'°¢ be an s-pointed
stable curve of genus g. Suppose that we are given a morphism over S'°8:

log
Ylog ¢ Xlog

Now we make the following:

Definition 2.9. We shall say that ¢'°% is log admissible if it is finite, log étale, and takes
marked points to marked points.

A typical example of a log admissible morphism may be obtained by considering the
“admissible coverings” of [HM]. Indeed, it is not difficult to see that by endowing the
curves involved (as well as the base) with appropriate log structures, one may obtain a log
admissible covering (cf. [Mzk], §3). (Note, however, that the definition of “log admissible”
given here differs from that of [Mzk], §3.)

Let (€,Ve) be the restriction of the canonical indigenous bundle (Exr, Ve, ) to X'°8.
Let ®'°8 ; §lo8 —, Glog he the pull-back of the Frobenius lifting @k}g to S'°8 (which exists
because S'°8 — (/T/’fo)log is log étale). Let (F,Vx) = ¢*(€,Ve). Observe that (F,Vr)p,
is a nilpotent, admissible indigenous bundle on Y'°8. Let us assume that:

(*) (F,Vx)p, is ordinary.

. .. o . -1
Then (F,Vr)p, determines a factorization of the classifying morphism S'°8 — ./\/lq(f

—ord

through (N, ,)'°&. Thus, we get a morphism

1 Lol ——ord |
K18 ¢ Glog _y (70" ylos
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—ord
For simplicity, let us write 7"°¢ for (./\f0 )

q?s
—ord
on (/\fq7s

)l°g. Let us denote by ¥'°¢ the canonical Frobenius
)eg and by (G, Vg) the canonical indigenous bundle on the universal s-pointed

—~rord .  eqs
stable curve of genus g over (/\/’0 ) g, Then we have the following compatibility result:

9,8

Theorem 2.10. We have a commutative diagram:

and an isomorphism k*(G,Vg) = (F,V£).

Proof. We shall apply induction on ¢ to the proposition “the Theorem is true when the
objects in it are reduced modulo p*.” The case i = 1 is clear. Thus, it suffices to prove the

induction step. Let us consider the crystals (F, V£)® and x*(G, Vg)¥ on Crys(X;’pg/Slog).

Suppose that they agree modulo p’. If we apply F* (the renormalized Frobenius pull-
back) to them, we get the same crystal modulo p*, by the induction hypothesis and the
definition of the canonical Frobenii and indigenous bundles. Thus, by Lemma 2.6, it follows
that the underlying vector bundles of (F,V£)® and x*(G, Vg)¥ must agree modulo pi**.
Since (F,V£)?® is indigenous on (Y'°8)® and x*(G,Vg)Y¥ is indigenous on the s-pointed
stable curve of genus ¢ given by pulling back the universal one by ¥'°2 o £!°8, we thus
obtain that the diagram in the Theorem commutes modulo p**!. Then since (F, Vr) and
k*(G,Vg) agree modulo p', it follows that their underlying vector bundles agree modulo
p'tl. By a similar argument, their underlying vector bundles also agree modulo p**2, and
the diagram commutes modulo pi*2. Then, by Lemma 2.5, since (F,Vx) = F*(F,Vx)?
and k*(G,Vg) = k*F*(G,Vg)Y, it follows that (F, V) and x*(G, Vg) agree modulo p**1.
This completes the proof of the induction step. ()

§3. Applications of the Canonical Frobenius Lifting

In this Section, we apply the general theory of §1 to the canonical modular Frobenius
lifting constructed in §2. In particular, we define the notion of a p-adic quasiconformal
equivalence class, and show how the choice of such a class allows one to construct both
affine and multiplicative uniformizations of Mg,r- We will also define the notion of a p-
adic topological marking, which will allow us to construct a local uniformization of M, .
by means of the affine space of quadratic differentials. As we make these constructions,
we will compare them to various classical constructions in the complex case. Finally, we
will specialize what we have done in this Chapter to the case of elliptic curves (regarded
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parabolically) to see that in this case, the canonical Frobenius lifting corresponds to a
well-known Frobenius lifting from Serre-Tate theory, and that, consequently, the various
objects constructed from it — i.e., canonical curves, modular uniformizations, etc. — reduce
to the corresponding objects of classical Serre-Tate theory.

Canonical Liftings of Curves over Witt Vectors

Let N/ ;ff ; @}ffg be as in the last subsection of §2. Let k be a perfect field of characteristic
p. Let A = W (k), the ring of Witt vectors with coefficients in k; let S = Spec(A). Thus,
we have a natural Frobenius automorphism &4 : A — A on A. Recall the notion of a

canonical liftings of A-valued points in N fo (Definition 1.9).

Definition 3.1. We shall call a point o € N;rf(k:) a (p-adic) quasiconformal equivalence
class (valued in k). We shall call an r-pointed stable curve of genus g the canonical curve
in the class g if it admits an indigenous bundle such that the pair consisting of the curve

C . . —~rord .
and this indigenous bundle defines a canonical A-valued point of N Zfr whose reduction
modulo p is ag.

Remark. Thus, a p-adic quasiconformal equivalence class consists of a hyperbolically ordi-
nary r-pointed stable curve (Xg — Spec(k);p1,...,p, : Spec(k) — Xg) of genus g, together
with a choice of a nilpotent, ordinary indigenous bundle (£, V¢)o on X(l)Og . Recall from
Chapter II, Proposition 3.13, that for a given ordinary X%, there are at most p39—3+"
possible choices for (£,V¢g)g. The reason for attaching the term “quasiconformal” to this
data will become more and more apparent as we continue: Namely, unlike the complex case
in which, once g and r are determined, all curves belong to the same quasiconformal equiv-
alence class, the uniformization theory that we shall develop in this paper in the p-adic
setting acts (by comparison to the classical complex case) as if there are many different

quasiconformal equivalence classes (for a given g and r), and moreover, this equivalence

. . ., . —pord
class is determined exactly by the datum of a point in A/ :r'

Specializing the theory of §1, we obtain:

. . . —ord
Theorem 3.2. For every p-adic quasiconformal equivalence class oy € /\/'Z,T (k), there

exists a canonical lifting o, € /T/'fo(A), i.e., more concretely, an r-pointed stable curve
(X — Spec(A);p1,...,pr : Spec(A) — X) of genus g, together with an indigenous (€,Vg)
on X8 This canonical lifting ase is uniquely characterized by the fact that it is fived
under @Zlfbffg, where @ffg 18 the canonical Frobenius lifting of Theorem 2.8.

Corollary 3.3. Suppose that the pair
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{(X — Spec(A);p1,...,pr: Spec(A) — X); (E,Ve)}

is canonical (i.e., for (€,Vg), this means that it is the restriction of the (En, Ve, ) of
Theorem 2.8). Then

(1) If X — Spec(A) is smooth, then (£,Ve) defines an MFY -object on
X8 in the sense of [Falt], §2 (up to tensor product with a line bundle
whose square is trivial).

(2) More generally, if X — Spec(A) is not smooth, then the pair is obtained
by gluing together (as at the end of Chapter I, §2) a collection of smooth
canonical pairs.

Proof. The two statements follow by specializing Theorem 2.8. ()

Corollary 3.4. A pair

{(X — Spec(A);p1,...,pr: Spec(A) — X); (E,Ve)}

consisting of a smooth r-pointed curve of genus g and an indigenous bundle on X'°% is
canonical if and only if

(1) the indigenous bundle (£,V¢)r, is ordinary;

(2) (£,Ve¢) defines an MFY -object on X'°8 in the sense of [Falt], §2 (up
to tensor product with a line bundle whose square is trivial).

More generally, a pair consisting of an r-pointed stable curve of genus g and an indigenous
bundle on X'°8% is canonical if and only if it is obtained by gluing together canonical pairs
as at the end of Chapter I, §2.

Proof. Let us first consider the smooth case. By the previous Corollary, it suffices to prove
the “if” part. Since (£, V¢) is an MFY-object, we know (by Chapter II, Proposition 2.10)
that (€, Ve)r, is nilpotent. Thus, there exists a canonical pair which is equal to our given
pair modulo p. On the other hand, it follows by the analogues of Lemmas 2.5 and 2.6 for
F* over S = Spec(A) that there is only one lifting of our pair modulo p that admits an
indigenous bundle which is an MFY-object. Thus, our pair must be the canonical pair.
Next, we consider the stable case. Again, by the previous Corollary, it suffices to prove
the “if” part. As before, we note that there exists a canonical pair which is equal to our
given pair modulo p. By the previous Corollary, the canonical pair is obtained by gluing
together smooth canonical pairs. Since a smooth canonical lifting is unique, it thus follows
that our pair must be the canonical pair. ()
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Corollary 3.5. Suppose that we have an r-pointed (respectively, s-pointed) stable curve
X8 (respectively, Y'°8 ) of genus g (respectively, q) over S'°8 (for some appropriate choice
of log structure on S'°8). Let (£,V¢) (respectively, (F,Vx)) be an indigenous bundle on
X'oe (respectively, Y'°%). Suppose that (F, VF)r, is ordinary. Let Plos ;. ylos _, Xlos pe
log admissible, and suppose that (F,V) = ¢*(£,Ve). Then the pair {X'°8;(£,Ve)} is
canonical if and only if the pair {Y'°8; (F,V£)} is canonical.

Proof. First note that, by pulling back square differentials and considering ®¢ and ®%, the
ordinariness of (¥, Vz)r, implies the ordinariness of (£, V¢)r,. The stipulated conditions
on ¢'°¢ imply that X'°% is obtained by gluing if and only if Y'°8 is obtained by gluing.
We thus reduce to the smooth case. But this follows immediately, by the criterion of the
previous Corollary (about the indigenous bundle being an MV -object) and the fact that
F* commutes with log étale coverings. ()

Canonical Affine Coordinates on M, ,

We maintain the notation of the preceding subsection. Thus, S = Spec(A); A = W (k);

—ord

and k is a perfect field of characteristic p. Let a € N, (A) be canonical. Since giving
a canonical o € N ;f,,, (A) is equivalent to giving the p-adic quasiconformal equivalence

—rord . .
class a(mod p) € N ;T’r (k), we shall frequently abuse notation and speak of “the p-adic
quasiconformal equivalence class a.”

Let us assume that a corresponds to a smooth curve. Then applying Theorems 1.12
and 1.14 to the canonical Frobenius lifting of Theorem 2.8 gives the following results:

Theorem 3.6. For every choice of a p-adic quasiconformal equivalence class o, we obtain
a local canonical uniformization

ycan . @fo ~ M;é,r
of My, by the affine space modeled on ©.

Let (B,mp) be a local ring with residue field k£ which is p-adically complete and has a
topologically nilpotent PD-structure on mp.

Definition 3.7. We shall say that § € NZ:?(B) is in the (p-adic) quasiconformal equiva-
lence class a if the point B(mod mpg) € N;rﬁl(l{:) is equal to a(mod p) € N;rj(k)

In summary, we have proven the following result:
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—ord , . .
Theorem 3.8. For every 3 € NZTT (B) in the quasiconformal equivalence class o, we
obtain a canonical class kg € mp - Og, as well as a local uniformization

ff ~
' o5 =,

of My, by the affine space modeled on ©g. Moreover, this uniformization is related to the
canonical uniformization by tensoring over A with B, applying the isomorphism

(Tap) ™" (Oa)p — Op

. . —ord .. .
and then translating by rg. Finally, for all 5 € /\/Z,r (B) that lie in the quasiconformal
equivalence class o, the correspondence 3 +— kg is a bijection of such (3 onto mp - ©g3.

Remark. In considering the uniformizations just obtained, it is tempting to compare them
with the local uniformization by the affine space modeled on the tangent space to M, ,
given in the complex case by considering geodesics for the Teichmiiller metric. We believe,
however, that if there is any proper complex analogue to the uniformizations of Theorems
3.6 and 3.8 at all, then it is the uniformization obtained by Bers coordinates. Indeed,
unlike the Teichmiiller coordinates, which are real, but not complex analytic, the Bers
coordinates are (complex) analytic, just as the affine coordinates of Theorems 3.6 and
3.8. Also, (perhaps more crucially) the Teichmiiller coordinates are the same for elliptic
curves regarded either hyperbolically or parabolically. We shall soon see, however, that
the uniformizations analogous to those of Theorems 3.6 and 3.8 for elliptic curves treated
parabolically are different from those in the hyperbolic case. One difference between the
Bers uniformization and the uniformizations of Theorems 3.6 and 3.8 is that the Bers
uniformization is by the affine space of quadratic differentials (of the complex conjugate
curve), not by the tangent space to M, ,. On the other hand, (even in the complex
case) one cannot have a holomorphic local canonical uniformization by the affine space of
quadratic differentials, as one can see easily by considering a one-pointed curve of genus
one with an automorphism of degree three. Thus, to obtain a uniformization by quadratic
differentials, we need more “rigidifying” information. In our case, the information will take
the form of a topological marking of the curve.

Topological Markings and Uniformization by Quadratic Differentials

We maintain the notation of the previous subsection. Let us consider the canonical

Frobenius lifting @5 : N fo — ./Tf(g)ff of Theorem 2.8. Just as in Definition 1.2, ® s defines

. , —~rord .
canonical étale local systems on A/ STT in free Z,-modules of rank 3g — 3 + 7:

Definition 3.9. We shall refer to ©% as the tangential local system on N;Tﬁ. We shall
call its dual, Q%% the differential local system on N Zf;i .
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Note that if one tensors over Z,, with F,, then these local systems become the local systems
(with the same names) considered in Chapter II, §3, following Proposition 3.4.

Now let us assume that k is algebraically closed. Let a € N Zf? (A) be a p-adic quasi-

conformal equivalence class. In this subsection, however, we assume that o corresponds to

ord

a smooth curve. We would like to consider the fundamental groupoid of N g 0 the sense

of [SGA 1], Exposé V, p. 130. Recall that this fundamental groupoid is the category of

o . ——ord
fiber functors from the category of finite étale coverings of N Zfr to the category of sets.

. ——rord . . .
Moreover, if v € N ;,T (k), then x defines a fiber functor F, of this type by simply restrict-

—ord

ing étale coverings of N;ff to Spec(k) via pull-back by z. Thus, if 2,y € N, . (k), then we
shall call a path from x to y a natural transformation from F, to F,.

On the other hand, recall from the last subsection of Chapter II, §3, the set D, of
isomorphism classes of totally degenerate r-pointed stable curves of genus g. If A € D, ,.,

. . ——ord
then, by abuse of notation, we shall also write A € N Zf?“ (A) for the totally degenerate
curve over A represented by A. Now we make the following important

Definition 3.10. We shall call a pair u = (A;w) a (p-adic) topological marking for the

—ord
quasiconformal equivalence class o if A € Dy, and @ is a path from a(mod p) € N, . (k)
—ord

to Ae N, . (k).

Let © = (A;w) be a topological marking for . Then let us note that p defines
a canonical nondegenerate bilinear form B, on ©, as follows. First note that by the
construction in Proposition 3.6 of Chapter II, §3 (which is carried out there over F,, but
clearly works just as well over Z,), we have a canonical nondegenerate bilinear form B
on ©%. Now the path w defines an isomorphism O, : O =2 OX. Thus, if we pull-back
B% by means of ©,, we get a canonical nondegenerate bilinear form Bff on ©¢. Since
Oq = (0F) ®z, A, we thus obtain (by tensoring) a canonical nondegenerate bilinear form
B, on O,.

Now let (B, mp) be alocal ring with residue field k£ which is p-adically complete and has
ord

a topologically nilpotent PD-structure on mp. Let 3 € A/ g

equivalence class a. Recall the canonical isomorphism

(B) be in the quasiconformal

(Tap) ™" (Ba)p — Op

implicit in Theorem 3.8. This isomorphism allows us to transport B, to ©3 so as to obtain
a canonical nondegenerate bilinear form BE on ©g. We summarize this as follows:

Proposition 3.11. The choice of a topological marking p on a quasiconformal equivalence

class a allows one to define a canonical nondegenerate bilinear form Bﬁ on ©g for every

——ord . . .
B eN, . (B) in the quasiconformal equivalence class c.
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This finally allows us to give local uniformizations of M, ,. by means of quadratic differen-
tials: Namely, we compose the affine uniformization of Theorem 3.8 with the isomorphism
O3 = Qg given by the nondegenerate bilinear form Bﬁ:

Theorem 3.12. The choice of a topological marking p on a quasiconformal equivalence
class o that corresponds to a smooth curve allows one to define a canonical class K/\:,B €
mp - Qg, as well as a local uniformization

ff ~
V,U/,B : Q% - Mg,’f‘

of Mgy, by the affine space modeled on Qg, for every B € ./Tf;ff(B) in the quasiconformal

equivalence class o. Finally, for all 3 € N ;ff (B) that lie in the quasiconformal equivalence

class a, the correspondence 3+ K, 3 is a bijection of such 3 onto mp - Qg.

Remark. Thus, we have obtained a canonical uniformization of M, , by quadratic differ-
entials for every choice of a topological marking on «. In the complex case, a topological
marking of a Riemann surface is given by fixing the underlying topological manifold, up
to homeomorphisms homotopic to the identity. Thus, the analogy between topological
markings in the p-adic and complex cases lies in the fact that a p-adic topological marking
gives one a canonical basis for @%t, hence for ©g, corresponding to a collection of parti-
tion curves (see Introduction, §2) of a Riemann surface. This specification of partition
curves determines a topological marking, by gluing together “pants” along the partition
curves. Thus, instead of uniformizing by the affine space modeled on g, we could also
have uniformized by the affine space modeled on a direct product of affine lines, one for
each “partition curve.” Whichever choice of coordinates (i.e., quadratic differentials or
partition curves) is more useful depends on one’s tastes or the applications one has in
mind.

Canonical Multiplicative Parameters

So far we have only been working with smooth curves. In order to find canonical
parameters at singular curves, we need to work with multiplicative parameters (like the
g-parameter in the case of elliptic curves), as opposed to affine parameters, as in Theorems
3.6 and 3.8.

——rord . . . .
Let « € N ;Tr (A) be a p-adic quasiconformal equivalence class (corresponding to a
curve which is not necessarily smooth). Let us assume, for the rest of this subsection,

that k is algebraically closed. Let Q98 be the restriction of leog to «a, and let ©, be

the dual A-module to ¢, Then the Frobenius invariant subsections of O, form a free
Z,-submodule ©°* C ©,, of rank 3g — 3+ 7. Similarly, we have Q¢ C Ql°6. Let (M), be

the completion of My, ®z, A at the image of a. Let w € Q¢ have residues equal to zero
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or one at all the irreducible components of the divisor at infinity of Mw, and nonzero
reduction modulo p. Then, just as in Definition 1.11, we have a parameter

Qu,a
on (ﬂg,r)a, which is well-defined up to multiplication by a Teichmiiller representative
[k*]. This parameter is a unit at all the divisors where the residue of w is zero and has
valuation one at all the divisors where the residue of w is one. Moreover,

Definition 3.13. We shall call such a parameter q,, o a canonical multiplicative parameter

on (My.r)a-
The Case of Elliptic Curves

Just as in previous Chapters, it is useful to look at the case of elliptic curves (regarded
parabolically) since the calculations are usually much easier in this case. As before, we let

leﬁ be the log stack of elliptic curves, and f°8 : glog — ﬂllo’% be the universal elliptic
curve (with the log structure defined by the pull-back to G of the divisor at infinity of

—ord

MLO). Let M, C ﬂl,o be the open p-adic formal substack parametrizing ordinary

elliptic curves. Recall that we computed in Chapter II, Theorem 3.11, that N{ffd = M’if{} ,

. = ——ord . . . .
and that the section of S; ¢ over (./\/lcl)’o )F, corresponding to the unique nilpotent, ordinary
indigenous bundle on an elliptic curve was given explicitly in Example 2 of Chapter I,
§2. Now it is easy to see that, although nominally everything in this Chapter was done
for hyperbolic curves, much of the theory goes through for elliptic curves, as well. In

particular, the construction of the canonical Frobenius lifting ®,r on M({f{f goes through
just as before. Since everything else in the Chapter is essentially a formal consequence of
the existence of ®,r, in this subsection, we would like to compute the lifting ® s explicitly
for elliptic curves, and identify the resulting concepts (i.e., canonical curves, uniformization,
topological marking, etc.) with the well-known objects of classical Serre-Tate theory. For
a treatment of classical Serre-Tate theory, we refer to [Mess| and [KM] (p. 260).

Let us begin by recalling a certain Frobenius lifting ® 4 on M?fg which is fundamental
to Serre-Tate theory. Ultimately, we shall show that ®,; = ®,r. First recall that the
étale quotient of the (log) p-divisible group P associated to the universal elliptic curve

gerd — ﬂj’f{f defines a local system £ on Mc{fg in free Z,-modules of rank one. Also, since
P is self-dual, taking Cartier duals gives us an inclusion £¥(1) ® (Q,/Z,) — P (where
the “1” in parentheses denotes a Tate twist). Let Py C P be the subgroup scheme given
by £V(1) ® (%Zp /Z,). Thus, taking the quotient by this subgroup scheme Pg gives us an
isogeny:
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(I)g . gord —H
to some elliptic curve ‘H over M‘ff{f . Let @ : ﬂ‘if{f — ﬂ‘{fﬁ be the classifying morphism
of H. Thus, H = &%, G° 4. Since considered modulo p, the subgroup scheme Pg is nothing
but the kernel of Frobenius, it follows that ® 4 is a Frobenius lifting, and that (®g)r, is
ord

just the relative Frobenius on ng . For convenience, we shall denote objects pulled back
via P ¢ with a superscript “F.”

Now let us consider the effect of pulling back the indigenous bundle (£,V¢)f" on
(GO E | where (£,V¢) is the indigenous bundle on G given in Example 2 of Chapter
I, §2. Let (F,Vg) = @Z(S,Vg)F. Let us denote by w the relative dualizing sheaf of

——ord
G — M 4. Then as a vector bundle,

F = ‘I)Z(W)F ) Og

Now let ¢ : (ﬁé(w)F — w denote the morphism on differentials induced by &g, divided
by p. Then I claim that ®¢ is an isomorphism. Indeed, since we are dealing with ordinary
elliptic curves, the local group structure near the origin is isomorphic to that of G,, (the
multiplicative group scheme), and the Frobenius lifting ®g just amounts to the p*" power
map on G,,. This proves the claim. Since & = w ® Og, ®§ thus gives us an isomorphism:

ExF

by taking the direct sum of ®¢ with the identity on Og. Next, we consider connections.
Recall that V¢ differs from the trivial connection by the tautological Ad(€)-valued dif-
ferential form given by mapping the first factor w to the second factor Og ® w. Thus,
when we pull-back by ®g, we get a similar nilpotent endomorphism-valued differential
form, this time given by the map from ®§(w)* (the first factor) to Og ® w (the second
factor) given by p - ®¢. On the other hand, when we compute the renormalized Frobenius
pull-back of (€, V¢), we divide out by this factor of p. It thus follows that under the isomor-
phism & = F considered above, the renormalized Frobenius pull-back gives a connection
on F which corresponds precisely to the connection Vg on €. Since @ and (Epr, Ve, )
are uniquely characterized by the property that the renormalized Frobenius pull-back of
O3 (Enry Ve, ) is isomorphic to (Ear, Ve, ), we thus see that we have proven the following
result.

Theorem 3.14. The canonical Frobenius lifting ® s for elliptic curves (regarded parabol-
ically) is equal to the Frobenius lifting ® . Moreover, the canonical indigenous bundle
(En, Ve, ) is the indigenous bundle constructed in Example 2 in Chapter I, §2.

Remark. In other words, what we have constructed here is just a relative version of the
uniformizing MF Y -object of Definition 1.3.
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Now let k£ be a perfect field of characteristic p. Then it is well-known from Serre-Tate
theory that an elliptic curve E — Spec(W (k)) is canonical in the sense of Serre-Tate the-
ory if and only if the point in o € My o(W (k)) that it defines is fixed by ® . We thus
obtain that the definition of a canonical curve given in Definition 3.1 is consistent with the
definition arising from Serre-Tate theory. Suppose we fix a trivialization of £®2|,. Then
Serre-Tate theory gives a local uniformization of M o near this point « by the comple-

tion (A?rm of the multiplicative group at the identity. Relative to this uniformization, ®
becomes the p!" power map on G,,. It thus follows immediately that the canonical affine
parameters that we constructed before (in the general case) correspond to the logarithm
of the Serre-Tate parameter (up to multiplication by a unit of W (k)). Moreover, one sees
easily that the local system QS corresponding to the Frobenius lifting ® A4 is simply £%2.
Thus, a topological marking (in the sense of Definition 3.10) defines a trivialization of
L%?|,, and so the Serre-Tate parameter itself is a canonical multiplicative parameter in
the sense of Definition 3.13. We summarize this as follows:

Theorem 3.15. Canonical liftings for elliptic curves (as defined in Definition 3.1 relative
to @) are the same as canonical liftings in the sense of Serre-Tate theory. Moreover, the
uniformization of Theorem 3.12 in the case of elliptic curves (regarded parabolically) is the

same as the uniformization of /\/l‘l),r(‘)i given by Serre-Tate theory.

Remark. 1t appears that the case discussed here in Theorem 3.15, i.e., the case g = 1,7 = 0,
is the only case of the theory of this paper that is essentially a reformulation of a classically
known theory. For instance, already in the case ¢ = 1, = 1, despite the fact that

Mg = M (as stacks), it is not difficult to show that NP and NP1t are quite different.

Indeed, in general, there exist connected components of Nﬁrld that are of degree > 1 over

M 1 (cf. Proposition 3.12 of Chapter II). This implies, in particular, that @, in the case
g = 1,r =1 is quite different from @, in the case g = 1,r = 0.

Finally, we observe that the term “topological marking” is apt in this case in the
sense that a topological marking defines a trivialization of L|,, which is analogous in the
complex case to specifying a particular pair of generators for the fundamental group of an
elliptic curve.
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Chapter IV: Canonical Curves

§0. Introduction

Because canonical curves (as defined in Chapter III, Definition 3.1) admit Frobenius
invariant indigenous bundles, they possess a number of special arithmetic and geometric
properties. In this Chapter, we study a number of these properties, foremost among which
are the existence of a canonical Frobenius lifting, and the construction of a canonical p-
divisible group. In particular, the canonical Frobenius lifting allows us to give a geometric
characterization of canonical curves which may be regarded as the hyperbolic analogue of
the statement in Serre-Tate theory that a lifting of an ordinary elliptic curve is canonical if
and only if it admits a lifting of Frobenius. From the point of view of comparison with the
complex case, this canonical Frobenius lifting may be regarded as a sort of p-adic Green’s
function. In the complex case, the Green’s function plays a central role in the development
of uniformization theory from the classical (as opposed to Bers’ quasiconformal) point of
view. In this context, the Green’s function is essentially the logarithm of the hyperbolic
distance function between two points. We shall see that the Frobenius lifting also gives us
a sort of p-adic notion of distance. Also, we shall see that we can construct “pseudo-Hecke
correspondences” which in some sense geometrically codify this notion of distance.

On the other hand, in the canonical case, we can also construct a certain Galois rep-
resentation (arising from the torsion points of the canonical log p-divisible group) which is
the p-adic analogue of the canonical representation in the complex case of the fundamental
group into PSLy(R) (defined by the covering transformations of the upper half plane).
Thus, in some sense, we see that at least in the canonical case, we are able to obtain ana-
logues of most of the fundamental objects that appear in classical complex uniformization
theory.

This brings us to the final reason for wanting to study the canonical case: namely,
the fact that the universal hyperbolically ordinary curve (over the moduli stack) is itself
(essentially) a canonical curve. Thus, in Chapter V, by restricting these canonical objects
over the universal curve to a given (not necessarily canonical) curve, we will be able to
obtain Green’s functions, canonical Galois representations, and so on for noncanonical
curves, as well.

§1. The Canonical Galois Representation

In this Section, we construct a certain canonical Galois representation of the arith-
metic fundamental group of a canonical curve. After studying some of the basic global
properties of such representations, we then consider what happens on the ordinary locus
of the curve. In particular, we construct a canonical ordinary Frobenius lifting over the
ordinary locus. This allows us to apply the general theory of Chapter III, §1. We will
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refer to the multiplicative parameters obtained from this general theory as the Serre-Tate
parameters. We will make use of the Serre-Tate parameter quite often in this Chapter.

Throughout this Section, we will work over A = W(k), where k is a perfect field of
odd characteristic. The quotient field of A will be denoted by K. Let g,r be nonnegative

—ord

integers such that 2g — 2 4+ r > 1. Also, we will deal with a fixed o € J\/'gjr (A), which
corresponds to a smooth canonical curve f1°8 : X108 — §l°8 where S'°8 is Spec(A) with the
trivial log structure. Since singular canonical curves are just obtained by gluing together
smooth canonical curves, we shall concentrate mainly on the smooth case.

Construction and Global Properties

Let (£, Ve) be the canonical indigenous bundle on X'°¢ (whose existence is stated in
Chapter III, Theorem 2.8). In fact, unless the number r of marked points is even, such
a vector bundle will not exist. However, one can always pass to an étale double cover
of X on which it will exist, and then descend. For simplicity, we will just act as though
this problem does not exist, except when we state final results in Theorems, in which
case our representations will be into GL* (that is, the general linear group GL modulo
the subgroup {#+1}). Now, we would also like to say that the renormalized Frobenius
pull-back F*(&, V)l is isomorphic to (£,Ve). In general, this may only be true up to
tensoring with a line bundle with connection whose square is trivial, but this may also be
ignored, provided we remember that ultimately our representations will be into GL*, not
GL. Let us choose an isomorphism ®¢ : (£,Ve) = F*(E,Ve) which is the identity on
determinants. We shall call ®¢ the canonical Frobenius action on (€,V¢).

Now let us assume that there exists a rational point x : S — X on X which avoids
the marked points. Let us denote by II the profinite group (X}?g ,Zx ). Then Theorem
2.6 of [Falt] implies that

Theorem 1.1. There exists a unique dual crystalline (in the sense of [Falt], §2) repre-
sentation

p: 11 — GLE(V)

(where V is a free Zy-module of rank two) that corresponds (under the functor D(—) of
[Falt], §2) to (€,Ve,®g). Moreover, the determinant representation of p is the cyclotomic
character. We shall refer to p as the canonical crystalline representation associated to
Xlog'

Remark. In the complex case, a hyperbolic Riemann surface can be uniformized by the
upper half plane. Then the fundamental group of the Riemann surface acts on the upper
half plane via covering transformations, and so we get a representation of the fundamental
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group into PSLa(R), which is canonically determined up to conjugation. The representa-
tion p of Theorem 1.1 is the p-adic analogue of this complex representation.

Now let A = (X5, ) be the geometric subgroup of II, so I' def IT/A is the Galois
group of K over K. Then by “the comparison theorem” (Theorem 5.3 of [Falt]), we get:

Theorem 1.2. Let p > 5. Then the group cohomology modules H*(A,Ad(V)(1)) (where
the “(1)” is a Tate twist) are zero, except when i = 1. Let U = HY(A,Ad(V)(1)). Then
U is a crystalline Z,-I'-module, which, as a Z,-module is free of rank 6(g — 1) + 2r. It
corresponds under the functor D(—) to an MF-object (in the sense of Fontaine-Laffaille)
(N; F'(N);¢") over A, where N is a free A-module of rank 6(g — 1) + 2r; F*(N) = 0 if
i >4; FY(N) = N ifi < 0; F'(N) is naturally isomorphic to H°(X, (wl;’fs)@Q(—D)), if
i =1,2,3; and N/F'(N) is naturally isomorphic to H (X, Txoz jgios ).

Remark. Some mathematicians have raised questions concerning that the validity of the
proof in [Falt], Theorem 5.3. However, in this one-dimensional case, one can give ad hoc
proofs of this result, and, moreover, (at least in the closed case, when » = 0) T. Tsuji has
orally informed the author that he has obtained a different proof of Theorem 5.3 of [Falt].

One interesting fact about the canonical representation p is that it is possible to
characterize it — as well as the canonicality of X'°¢ — solely in terms of the properties of p
as a Galois representation:

Theorem 1.3. Suppose that p > 5. Let X'°¢ — Spec(A) be any (not necessarily canonical)
r-pointed smooth curve of genus g over A. Assume that we are not in the cases (g = 0; r =
3)or(g=1,r=1). Let 7 : Il — GLi(W) be any dual crystalline representation of
II = Fl(X;?g, Ti) on a free Zy-module W of rank two such that

(1) HS(A,AA(W)(1)) = 0 if i # 1; HY (A, Ad(W)(1)) is crystalline, and
corresponds to an MF-object M = (M; F*(M);4*) such that F*(M) =
0ifi>4; F{(M)= M ifi <0; and F*(M) is a free A-module of rank
3g—1)+rifi=1,2,3;

(2) the Frobenius endomorphism of (M/F'(M))g, (arising from the MF-
object of (1)) is an isomorphism;

(3) det(r) is the cyclotomic character.

Then X'°8 is canonical, and T is isomorphic to the representation p of Theorem 1.1.

Proof. Since 7 is asserted to be dual crystalline, it corresponds to some vector bundle with
connection (G,Vg) on X'°8 together with a filtration F*(G) on G. Let i; (respectively,
i2) be the largest i such that F*(G) # 0 (respectively, F*(G) = G). Thus, i; > is. The
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condition that det(7) be cyclotomic implies that i; + i = 1. If the rank of F(G) is not
one, then i; = ip, and det(7) could not be cyclotomic, so F**(G) must be of rank one, and
i1 > ip. Let £ = F"(G). Thus, £ is a line bundle.

Let j; be the largest j such that F7(M) # 0. Now we claim that £ can not be stable
under Vg. Indeed, if it were, then the monodromy at the marked points of Vg on L,
being nilpotent and one-dimensional, must be zero. Thus, the induced connection on £
has no poles at the marked points. But this would imply that deg(L£) = 0. Hence the
rank over A of F71(M) would be < h%(X,L%?* ® wyx/s) < g < 3g — 3+ r (by Clifford’s
Theorem), which contradicts our hypotheses. This proves the claim. On the other hand,
by Griffiths transversality, if i; — io > 2, then F*(G) would have to be stable under Vg.
Thus, i1 =49 + 1, so i1 + i2 = 1 implies that i; = 1 and 75 = 0.

Now rank 4 (F*(M)) = 3g—3+r < h°(X, L¥? ®wx/s), so the line bundle L#? Qwy/g
must be nonspecial, by Clifford’s Theorem. It thus follows that deg(£%?) > 2g—2+r. Since
the Kodaira-Spencer morphism for the filtration is nonzero, we cannot have deg(£%?) >
2g — 2+ r. Thus, we see that (G, Vg) must be indigenous. Since it is also carried to itself
by the renormalized Frobenius, it follows from Chapter III, Corollary 3.4, that X% is
canonical, and that (G, Vg) must be the canonical indigenous bundle of Theorem 1.1. O

Remark. For the reader who is interested in handling the cases g = 0; » = 3 and g = 1;
r = 1, as well, we remark that by considering conditions (similar to those imposed on
H'(A,Ad(W)(1))) on higher symmetric powers of W, one can characterize the canonical
representations in these cases as well solely in terms of their properties as Galois represen-
tations.

Remark. Really, the substantive missing element here is that it is not clear to the author
how to characterize the property of being “dual crystalline” solely in terms of proper-
ties of the representation relative to the triple (ILA C IL;TI/A = Gal(K/K)). Thus,
ultimately, a knowledge of the curve X'°% is always present in the background of this
“Galois representation-theoretic” characterization of the canonical representation. For in-
stance, if the property of being “dual crystalline” were known to depend only on the triple
(II; A C II;II/A = Gal(K/K)), then one could obtain the result that whether or not a
curve is canonical depends only on that triple.

In the following, we return to the assumption that X°8 is canonical.
The Horizontal Section over the Ordinary Locus

We maintain the notation of the previous subsection. Let X°™@ be the p-adic formal
scheme which is the open sub-formal scheme of X given by the complement of the super-
singular divisor (Chapter II, Proposition 2.6). Let us endow X°'¢ with the log structure
induced by X8, and call the resulting log formal scheme (X'°2)°*4, We shall refer to
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(X'og)ord a5 the ordinary locus of X'°8. The purpose of this subsection is to prove and
interpret the following result:

Theorem 1.4. There exists a unique subbundle Tz C E| xora of rank one with the following
properties:

(1) T3 is horizontal, and moreover, for any n, the reduced line bundle

5

7/ has a nonempty subsheaf (m the category of sets) consisting of

horizontal sections that generate ’T as an O xora-module;

Z/p"Z

(2) Tz is taken to itself by ®e.

Finally, (T2)®?2 is naturally isomorphic to TXlog / glos | xord .

Proof. Let us prove that there exists a unique ®¢-invariant horizontal subbundle Tz C
&| xora with horizontal generating sections. We prove this by induction on n, where the n'"
step is the construction of such a 7% modulo p". For n = 1, recall that (up to tensoring
with a line bundle) &, is an FL-bundle (Chapter II, Proposition 2.5). Then under the

correspondence of that Proposition, we take our subbundle T2 to be the subbundle of
& corresponding to the subbundle that we called “7” in our dlscussmn of FL-bundles in
Chapter II, §1. This subbundle is clearly horizontal, and has local generating sections
that are horizontal. In this case, uniqueness follows from the fact that the p-curvature is
nonzero.

Now we assume that n > 2, and that the result is known for n—1. Let U8 = (X!°8)ord,
and let @8 : e — (U'°8)F be a Frobenius lifting. Let us consider the quotient Q
(respectively, P) of £z/pnz by p" L FH(E) (respectively, p"~1 - £). Thus, P is a quotient
of @, and P = Ez/pn-1z. Let T” C P be the subbundle given us by the induction
hypothesis. Let 7’ C Q be the the inverse image of 7" C P via the surjection Q — P.

Then ®*(7')F C ®*QF defines a subbundle ’2'2/ ng Of F*(E)g/pn,z. It follows from the

1
definition of TF?p and the fact that we are on the ordinary locus that ’Tz oz is flat over

1

Z/p™Z. The existence of local horizontal generating sections for ’TZ2/an follows by taking

such a section of 7", lifting it to 7', and then pulling back this lifted section of 77 to a
1

section of Tzz/pnz via ®*. That the connection vanishes on this section follows from the

definitions, plus the fact that pulling back by ® adds an extra factor of p. Since 7" is De-

invariant, it follows that ’TZZ/ ng @ Z /p"~1Z = T". Thus, by the construction of TZ oz

it is clear that ’T

Z/pnz 18 Pe-invariant, since pulling back any lifting of 7" by ®¢ will

give T Also, this same observation (coupled with the induction hypothesis) proves

Z/pnZ°
uniqueness. This completes the proof of the induction step. The last statement about

(T %)®2 follows from considering the splitting of the Hodge filtration that 72 defines. O
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Now suppose that our basepoint = : S — X maps into the ordinary locus X°'4. Let
o7 = 7y ((X'°8)9%4 2 ). Thus, we have a natural morphism:

Hord N |

Let us denote the restriction of p to II1°™ via this natural morphism by

pord . Hord N GL:I:(Vord)

Then if we apply the theory of [Falt], §2 to interpret Theorem 1.4, we see that the subbundle
T: CE | xora in fact defines a sub-MZFY-object corresponding to an étale representation
(po" )y - TIOM — GLi(Vet) of I1°*4 for some rank one free Z,-quotient module V°rd — V.
Here, by “étale,” we mean that the kernel of (p°*4); defines an étale covering of X°™. In
other words, we have an exact sequence of (“up to {£1}”) representations of IT°™:

0= Vi (1) = V" = Vo — 0

where the “1” in parentheses is a Tate twist. We state this as a Corollary:

Corollary 1.5. The restriction p°*¢ of p to 114 defines an (“up to {£1}”) module V°rd
of II°™  which fits into an exact sequence:

0= V(1) = Vo = Vi — 0
where Vi is étale and of rank one over Z,,.
The Canonical Frobenius Lifting over the Ordinary Locus

In this subsection, we construct the generalized analogue (for an arbitrary canonical
X'°8) of the p-adic endomorphism of the ordinary locus of the moduli stack of elliptic curves
obtained by sending an elliptic curve with ordinary reduction to its quotient modulo its
unique subgroup scheme which is étale locally isomorphic to p,. In many respects, the
construction is similar to (although not literally a logical consequence of) the construction

of the Frobenius lifting on A fo constructed in Chapter III, §2.

Consider the canonical indigenous bundle (£, V¢) (of Theorem 1.1) on the canonical
curve X'°¢ — Glog By Chapter II, Proposition 2.5, (&, Ve)r, corresponds to an FL-bundle

O—>TFP—>.7:—>(9XFP—>O
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on Xif.’ f . By the material directly preceding Chapter II, Proposition 1.2, splittings of this
exact sequence correspond to Frobenius liftings on XIZO /gPQZ. Now, over the ordinary locus

of X'°& the Hodge filtration defines such a splitting. Let us denote the resulting Frobenius
lifting on the ordinary locus by

@5+ (X' 9)g oz — (X5 o
Let us denote by & the vector bundle which is the inductive limit of the following diagram:

Fi¢) — €

>

Fi()

where the horizontal arrow is the natural inclusion. Note that gz /pnz. depends only on

Ez/pnz- By the definition of the renormalized Frobenius pull-back, <I>§52F 027 18 naturally
isomorphic to £z/,27. We shall identify these two sheaves in the following discussion. On
the other hand, by considering the object in the upper right-hand corner of the diagram
defining £, we obtain a morphism

orel 2z = €2/

whose restriction to @;Fl(é’)g/pgz vanishes on p - ®5F1 (8)§/pgz and maps @;Fl(é’)g/pgz
into p- F(&)g /p2z (by the definition of the correspondence between Frobenius liftings and
splittings of the FL-bundle F).

Now let W3 : (Xlog)%r/dpgz — ((X1°g)°rd)§/psz be any lifting of ®5. Then, again from

the definition of the renormalized Frobenius pull-back, we obtain a morphism
\I/;;gg/pgz — gZ/p?’Z

which vanishes on p? - U5 F1(& )g 1T However, if U3 is an arbitrary lifting of ®5, then we
don’t know that W5F"'(€)7 /35 is mapped into F'(€)z,psz2.

Now suppose that we modify W3 by a section § € F(Xord,TFp). Let Hr : Tp, —
(Tx108 /5108 )F, | xora be the isomorphism defined by projecting to the Hodge filtration. Then
the subsheaf of £z/,37 given by the image of F*(£)5 poz, under Vs + 4§ differs from the
corresponding image subsheaf under W3 by the amount Hz(6) € T'(X Y, (Txos /5100 )F, )-
Indeed, this follows from the definitions, plus the fact that the Kodaira-Spencer morphism
for £ is the identity. Since H7 is an isomorphism, it thus follows that there exists a unique
Frobenius lifting
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3 : (Xlog)%r/dp-‘ﬂz - ((Xlog)ord)g/pSZ

that lifts @5 such that ®35 maps Fl(ﬁ)g/pgz into F1().

Clearly, we may repeat this procedure modulo p™ for arbitrary n > 3, so as to obtain
a unique

(I)l)(()_g : (Xlog)ord _ ((Xlog)ord)F

such that under the natural morphism

orEF — €

the Hodge filtration is preserved. Note, moreover, that it follows from the fact that the
Kodaira-Spencer morphism at the Hodge section is an isomorphism plus the interpretation
of the FL-bundle F in terms of Frobenius liftings that this Frobenius lifting @g?g is ordinary
in the sense of Chapter III, Definition 1.1. In summary, we have proven the following result:

Theorem 1.6. Let X'° be a canonical curve; (£,V¢) the canonical indigenous bundle on
X', Then there erists a unique ordinary Frobenius lifting (called canonical)

(I)l)(;g . (Xlog)ord _ ((Xlog)ord)F
over the ordinary locus that preserves the Hodge filtration.

In particular, we can apply the theory of Chapter III, §1, to the Frobenius lift-

ing CIDI)C;g. Note that it follows immediately from the definitions that the MFY-object

(E,FY(E),Ve, Pe)|(x0s)era is precisely the uniformizing MFY-object associated to o'oe

(as in Chapter III, Definition 1.3). Let us write

1

T = (T4)%

Thus, Ve (respectively, ®¢) induces a natural connection (respectively, Frobenius action)
on 7, which defines the canonical tangential local system of Chapter III, Definition 1.2.
Since 7 is a line bundle, it is the same to give (over an étale covering of X°*4) a generating
Frobenius invariant section of it, or a generating Frobenius invariant section of its dual.
Thus, (just as in Chapter 111, Definition 1.11) if € is such a section of 7', then 6 defines, at
every z € X°'4(A) that avoids the marked points, a unique multiplicative parameter

g9 € R
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(where R, is the completion of X' at z). If the residue of 6 is equal to one at a marked
point z € X°"(A), then we get a multiplicative parameter

qge R,

(with valuation one at the divisor Im(z)) which is unique up to multiplication by a Te-
ichmiiller representative [k*].

Definition 1.7. We shall call ¢ (respectively, qg) the Serre-Tate parameter (respectively,
relative to 0) at z.

Note, in particular, that by the theory of Chapter III, §1, <I>)_(1 maps ¢ (respectively, gg) to
q? (respectively, gy).

Remark. In some sense, it would be more aesthetically pleasing if one could obtain the
Frobenius lifting of Theorem 1.6 in the following way. We consider the universal curve

—ord . .
C—- N ;T. Then C parametrizes (r + 1)-pointed stable curves of genus g, so we have a
Frobenius lifting on some stack which is étale over C. If we could prove that this Frobenius

lifting is compatible with the canonical Frobenius lifting on A/ ZI:,,, then we could obtain a

canonical Frobenius lifting on C (or at least some stack étale over C) simply by using the
——ord

canonical Frobenius on 'y, ;.

The problem with this approach is that despite the fact that the canonical modular
Frobenius liftings of Chapter III do have many interesting functorial relations (i.e., rela-
tive to restriction to the boundary and log admissible coverings), in general, the sort of
compatibility of Frobenius liftings necessary to make the above sketch of a proof work —
namely, compatibility with “forgetting a marked point” — simply does not hold. Indeed,
one can already see this in the case of the morphism

Ml,l — Ml,O

which is the identity on the underlying stacks, but which we think of as assigning to a one-
pointed curve of genus one the underlying elliptic curve. Here, the canonical Frobenius on

——ord . . . : ——ord .
N (1)r1 cannot be compatible with the canonical Frobenius on N iro for the following reason.
Since N (1)?0 — M o is an open immersion, it would follow that the canonical Frobenius

on N Trf would descend to an open formal subscheme of Mj ;. But this would mean that
even if a one-pointed curve of genus one in characteristic p belongs to several distinct
quasiconformal equivalence classes (a phenomenon which by Chapter I, Proposition 3.13,
does occur), the canonical liftings of that curve would be the same for all quasiconformal
equivalence classes. But this would mean that we have several different ordinary indigenous
bundles on a single hyperbolic curve, all of which are Frobenius invariant. By Chapter III,
Lemma 2.6, this is absurd.
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§2. The Canonical Log p-divisible Group

Although the existence of the canonical Galois representation of §1 is, in and of itself,
of some interest, one technical drawback that it has is that it is difficult to relate the
properties of the Galois representation or the characteristic zero coverings of ng that it
;/g prZ’
on X'° which gives us back the canonical Galois representation (by looking at the Galois
action on torsion points), but which has the advantage that one can study and understand
its reductions modulo p™ in a similar fashion to the elliptic modular case (which is studied

in [KM]).

determines to X Thus, in this Section, we shall construct a log p-divisible group

Log p-divisible Groups at Infinity

We maintain the notation of the previous Section (although k need not be algebraically
closed, just perfect). For basic facts about log schemes, we refer to [Kato] and [Kato2].
In [Kato2], certain finite, log flat group objects over the compactified moduli stack of
elliptic curves are introduced which are supposed to be the analogue at infinity of the
usual finite, flat group schemes that one gets from elliptic curves by considering the kernel
of multiplication by a power of p. Since we will use such objects (as well as the p-divisible
group objects obtained by taking direct limits thereof) later in this Section, we take the
time out in the present subsection to review explicitly the construction of these finite, log
flat group objects.

Let R = Al[g]] be a complete local ring which is formally smooth of dimension one
over A. If one inverts ¢, then by taking the (p™)"* root of ¢, one obtains an extension of
finite flat group schemes

0—Z/p"Z(1) — G, — Z/p"Z — 0

over R[1/q]. Because ¢ is not a unit in R, it is impossible to extend this extension of finite
flat group schemes over R[1/q] to an extension of finite flat group schemes over R. Our goal
in this subsection, however, is to exhibit a natural extension of the above exact sequence
to an exact sequence defined over R by working with group objects in the category of
finite, log flat log schemes over Spec(R)'°. (In this subsection, we will regard Spec(R) as
endowed with the log structure arising from the divisor defined by q.)

For nonnegative integers a, b, let M, ; be the monoid given by taking the quotient of
N? (where N is the monoid of nonnegative integers) by the equivalence relation generated
by (p®,0) ~ (0,b). Let e; € M, (respectively, ea € M, ;) be the image of (1,0) (respec-
tively, (0,1)) in M, . Then it follows from the theory of [Kato2] (especially, §4.1,5.1) that
we can construct the desired extension

0—Z/p"Z(1) — @fg —Z/p"Z — 0
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as follows: For j € {0,...,p" — 1}, consider the scheme G, ; given by R[z]/(zP" — ¢7),
with the log structure given by the chart ([Kato], §2) M, ; with e; — z; e3 +— ¢. Denote

the resulting log scheme by (G’ )lrf% Let Gi‘;’gj be the universal valuative log space ([Kato2],

§1.3.1) (which, in this case, will still be a log scheme) associated to (G’)l;;’%-. Let @fg be

. . —l —l .
the union of the Gifi.. Note that when we invert g, G: ® becomes G,,. Endow G: ® with

. . —1
the unique structure of group object that extends the group structure on G,,. Then G; &
is a group object in the category of finite, log flat log schemes over Spec(R)°2, and it fits
into an exact sequence as above.

. —1 —1 . .
As we allow n to vary, we get morphisms G: 5 Grf_l. Thus, we obtain an ind-group

object G' over Spec(R)"s.

Definition 2.1. We shall refer to G as the log p-divisible group over Spec(R)'°8 obtained
by taking p'" power roots of q € R.

Finally, we remark that, although what we are doing here is, in some sense, just
“trivial general nonsense,” its utility lies in the fact that by using it, we can obtain p-adic
finite coverings of X'°8 that are defined ower all of X'°8, thus allowing us to algebrize.

Construction of the Canonical Log p-divisible Group

We now turn to the construction of the canonical log p-divisible group on X'°8. Con-
sider the MFV-object (£, Vg, ®¢), defined by the canonical indigenous bundle. Let n > 1.
Let U C X be the open p-adic subscheme defined by removing the marked points. Then
the reduction modulo p™ of (£,Ve, ®¢)|y defines, by [Falt], Theorem 7.1, a finite, flat
group scheme (annihilated by p™), which we denote by G|z — U. On the other hand, let
R be the complete local ring at any one of the marked points. Then (£, Vg, ®¢) defines a
Serre-Tate parameter (as in Definition 1.7) ¢ € R/[k*]. Let ¢ € R be any representative
of ¢. Then R = A[[¢]]. Let G°¢|r be the log scheme constructed in the previous sub-
section by taking a (p™)*"-root of gq. Observe that different choices of ¢ give us naturally
isomorphic G'°8|z’s. Also, note that if we invert ¢, then G1°¢| becomes (G, |7)|z. Thus,
we see that G|y and the various G18|p at the marked points glue together naturally to
form a finite, log flat group object G1°¢ — X'°8 which a priori is just p-adic, but may be
algebrized since X is proper over A. Also, as n varies, we obtain natural morphisms

1
o GRS G —

which thus form an inductive system of group objects.

Definition 2.2. We shall call this inductive system of group objects the canonical log
p-divisible group on X8,
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Remark. As usual, strictly speaking we really have only defined a “group up to {£1}.”
That is, we really only have a group object over (perhaps) a finite étale covering of X
of degree 4, plus descent data (satisfying the cocycle condition up to {£1}) down to the
original X. We could, of course, develop the general nonsense of such “groups up to {£1},”
but we choose not to, since it seems to serve no real purpose.

If we invert p, then this log p-divisible group G'°¢ on X'°¢ defines a local system on
the étale site (ng)et in free Z,-modules of rank two. Thus, we get a Galois representation

on the Tate module T of characteristic zero torsion points of G°8:

pees : 1T — GLE(T)

Then we have the following result (which is immediate from the theory of [Falt], especially
the construction in the proof of Theorem 7.1):

Proposition 2.3. The representation pgoe is isomorphic to the canonical Galois repre-
sentation p of Theorem 1.1.

Review of the Theory of [Katz-Mazur]

In this subsection, we apply to the log p-divisible group G'°¢ the theory of [KM],
which is exposed in [KM] solely in the case of the canonical log p-divisible on the compact-
ified moduli stack of elliptic curves, but whose proofs go through without change for the
canonical log p-divisible group G'°% on any canonical curve X2,

First of all, because G'°® is a logarithmic p-divisible group, it follows from [Mess],
Chapter II, Theorem 3.3.13, that if we consider the formal neighborhood of the identity
section € : X — G, we obtain a formally smooth formal scheme G(¢) over X, which is easily
seen to have relative dimension 1 over X. We would like to use this observation to apply
the theory of [KM], Chapter 1, on “A-generators” and “A-structures” to G'°¢. The theory
there goes through just as in the modular case since the only technical assumption needed
on the finite, flat (logarithmic) group schemes whose A-generators we wish to parametrize
is that they be closed subschemes of some smooth one-dimensional scheme. However,
looking at the proofs of [KM], one sees that in fact, it suffices to have the finite, flat (log)
group schemes be closed subschemes of a formally smooth formal scheme (such as G(c))
of relative dimension one. Thus, we can define various moduli problems, just as in [KM],

Chapter 3, by means of various structures:

(1) a T'(n)-structure, which consists of giving a Drinfeld basis for G'°¢;

(2) a I'1(n)-structure, which consists of giving a point “of exact order p™”
in Glo¢;
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(3) a T'g(n)-structure, which consists of giving an isogeny G'°& — H'8
(where H'@8 is also a log p-divisible group) whose kernel is cyclic of
order p".

Moreover, just as in [KM], one proves that these various moduli problems are representable
by schemes X (n); Xi1(n); Xo(n) that are finite over X. Finally, all of these schemes X (n);
X1(n); and Xg(n) are, in fact, reqular. Indeed, away from the marked points, the proofs
of regularity in [KM], Chapters 5 and 6, boil down to general nonsense plus two technical
results (Proposition 5.3.4 and Theorem 6.1.1). Since these technical results are proven,
respectively, for arbitrary formal groups and arbitrary finite group schemes, it is immediate
that the regularity proofs of [KM] in the modular case go through without change for X (n);
X1(n); and Xg(n). At the marked points, the combinatorial descriptions of the situation at
the cusps in [KM], Chapter 10, go through without change for the above moduli problems.
We thus obtain the following Theorem:

Theorem 2.4. The schemes X (n); X1(n); and Xo(n) that represent the moduli problems
listed above are all regular, and hence equal to the normalizations of X in the finite cover-
ings of X defined by the appropriate composites of p : 11 — GLi(V) with finite quotients
GLE (V) — G, just as in the classical modular case.

Fix a positive integer n. We shall also need to analyze Xy(n) modulo p, in a fashion
similar to what is done in the modular case in [KM], Chapter 13. Let us (for the rest of
the Section) denote X(n) by Y, and let us use a subscript m on X, Y, etc., to denote
reduction modulo p™*!. Let us denote by @4 : A — A, &), : k — k the respective absolute
Frobenius morphisms, and by a superscript F™ the result of base-changing an object by the
m*" power of Frobenius, and by ® X, ¢ Xo — X[ the relative Frobenius of Xj. Essentially,
the description of Yy =Y ®z, F, given in [KM], Chapter 13, goes through in our situation
here, but we need to do things with a little bit more care, since [KM] often falls back on
the “crutch” of using the modular interpretation of their “X,” which we lack in this more
general situation.

For each ordered pair of nonnegative integers (a,b) such that a + b = n, we would
like to define a k-scheme Xq(a,b) of “(a,b)-cyclic isogenies” together with a k-morphism
Lapyo © Xo(a,b) — Yp. We do this as follows. If a,b > 1, then we let Xo(a,b) be
the schematic inverse image of Inf?~*(A) (the (p — 1) infinitesimal neighborhood of the
diagonal) via

b

a—1 b—1 . re- Fo—t o1

If a or b is zero, then we let X(a,b) be the schematic inverse image of the diagonal A via

a b . Fa~b F Fe
XQX@XQ'XOXXO —)Xo XXO
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Observe that in either case, (Xo(a,b))red is smooth over k; ®% x ®%_ maps Xo(a,b) C

Xo X X{a_b into A € X" x XI""; and X (a,b) comes equipped with a finite, flat, radicial
morphism

Do(a, b) : Xo(a, b) — Xo

To define

L(a,b);O : Xo(a, b) — YO
we must specify a cyclic subgroup of order p” of Do(a,b)*G})Og. Now on the one hand,
by composing the a'" power of Frobenius with the b*"-power of the Verschiebung (as in
[KM], Theorem 13.3.5), we get some subgroup object of order p™ of Dy(a, b)*GBOg , and by
the same argument as that given in [KM], Theorem 13.3.5, one sees that this subgroup
must be cyclic (in the Drinfeldian sense). Thus, by the modular definition of Yy, we get a
morphism ¢(q 4);0 : Xo(a,b) — Yp.

In order to apply the theory of [KM], Chapter 13, we must verify the conditions (1)
through (8) listed at the beginning of that Chapter. (Caution: The letters X and Y
in [KM], Chapter 13, are used in the reverse way to the way that they are used here.)
Conditions (1), (2), (4), (5), and (6) are trivial. Condition (3) follows from the regularity
of Y and the fact that over a supersingular point, there is only one A-generator valued in
k for a cyclic group, namely the identity element. Note that at ordinary points, one can
do the same analysis of p'" power isogenies of log p-divisible groups as is done in [KM],
Chapter 13, §3. Thus, Condition (7) (that ¢(4,),0 is a closed immersion) and Condition (8)
(that the ¢(45),0’s define an isomorphism of the disjoint union of Xo(a,b)’s with Yy over
the ordinary locus) follow at the level of topological spaces from this analysis, and at the
level of complete local rings by considering the deformation parameters for the domain
and range log p-divisible groups of the isogeny. We thus get a result analogous to [KM],
Theorem 13.4.7:

Theorem 2.5. The k-scheme Yy is the disjoint union, with crossings at the supersingular
points (in the terminology of [KM], Chapter 13, §1), of the n+ 1 schemes X¢(a,b) (where
a+b=mn). Let fqp) € k[[x,y]] be the equation

if a,b > 1, and let it be zP" — ypb if a or b is zero. Then the completed local Ting at a
k-rational supersingular point of Yy is tsomorphic to

Kl )/ (1] fam)

(a,b)
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with the closed subscheme Xo(a,b) C Yy given by the equation fq ).

§3. The Compactified Canonical Frobenius Lifting

In this Section, we study the canonical Frobenius lifting on the ordinary locus of
a canonical curve (defined in Theorem 1.6). In particular, we study its behavior at su-
persingular points, and “compactify it” in some sense, so as to obtain “pseudo-Hecke
correspondences.” It is by abstracting the main properties of this compactified Frobenius
in the canonical case that we shall obtain a geometric criterion for a curve to be canonical
in §4.

The Canonical Frobenius Lifting and the Canonical Log p-divisible Group

Let us denote by
q)l)(;g . (Xlog)ord N ((Xlog)ord>F

the canonical Frobenius lifting of Theorem 1.6. Let G'°% be the canonical log p-divisible
group on X8 of Definition 2.2. Then we rephrase Theorem 1.6 in terms of G'°% as follows:

Theorem 3.1. The canonical Frobenius lifting of Theorem 1.6

q)l)(;g : (Xlog)ord _ ((Xlog)ord)F

mduces an isogeny of degree p

@;’ (G]Og)F | (Xlog)ord — GlOg | (Xlog)ord

between the canonical log p-divisible groups that lifts the Frobenius morphism modulo p.
Moreover, <I>l§g is the unique Frobenius lifting over (X'°8)°™ that has this property.

Proof. The existence of the isogeny follows from the fact that we have defined a morphism
between the respective Dieudonné crystals that respects the Hodge filtrations. This induces
the isogeny (see [BBM] and [Mess]). On the other hand, the uniqueness statement follows
from the uniqueness statement in Theorem 1.6, together with the fact that if a Frobenius
lifting induces such an isogeny, it automatically preserves the Hodge filtrations on the
Dieudonné crystals. O
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Let n > 0. Let Y = Xy(n). Let Yo' C Y be the p-adic open formal subscheme
consisting of points lying over X°*4. Now the Frobenius lifting of Theorem 3.1 allows us
to extend the decomposition in characteristic p of Y  into components corresponding to
(@, b)-cyclic isogenies to a decomposition over A = W (k), on the ordinary locus. To obtain
this decomposition, we define closed p-adic subschemes

X(a,b)ord C Xord X A (Xord)F“_b

via the same recipe as we did for Xo(a,b), except using our canonical Frobenius lifting
CDl)cgg : (Xlogyord — ((XTlogyord)F ingtead of ®x,. Then, just as before, we get a natural
embedding ¢(4 ) : X(a, b)°rd — Yord (analogous to L(a,p);0) Which induces an isomorphism

yorde | ) X(a,b)®  (disjoint union)
a+b=n

Finally, over Y°', we have a tautological isogeny

log log
Gyord - HYord

(where GI% , is the pull-back of G°% to Y°rd) such that over X (a,b)°™d, H ;fg is naturally

Y ord ord
isomorphic to the pull-back of (G1°8)F"™" via the projection X (a,b)°rd — (Xor)F*™" to
the second factor.

Local Analysis at Supersingular Points

We now exploit the existence of the isogeny of Theorem 3.1 to understand the be-
havior of the canonical Frobenius lifting at the supersingular points. Let z € X (k) be
a supersingular point. In studying x, we will often need to involve its various Frobenius
conjugates ¥ € X (k) (which may be infinite in number if the perfect field k is not finite).
We begin our analysis by considering the double iterate of the Frobenius morphism over
some infinitesimal neighborhood V' C Xy, at z:

D2 : Glo8|y, — G°8| po

Thus, V is the spectrum of a local artinian ring, with residue field k. Let us assume that
V' is contained in the supersingular divisor (Chapter II, Proposition 2.6) of the canonical
indigenous bundle. By definition, this means that over V', the Hodge filtration coincides
with the FL-bundle filtration. It thus follows that over V', the kernels of the Verschiebung
and Frobenius morphisms coincide. Since the kernel of the composite of the Verschiebung
and the Frobenius is just the kernel of multiplication by p, it follows that the morphism
®2, is isomorphic to the morphism “multiplication on p.” In particular, it follows that
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GlOglvpz & G10g|v

By iterating this isomorphism, we obtain that G'°2|y is isomorphic to the pull-back to V'
of a p-divisible group over k. Since the Kodaira-Spencer morphism of the Hodge filtration
of (£,Vg) is an isomorphism, this implies that V' must be Spec(k). Thus, the assumption
that V lies inside the supersingular divisor implies that V is reduced. Put another way, we
see that we have proven (in this general context) the analogue of Igusa’s theorem ([KM],
p. 355):

Proposition 3.2. The supersingular divisor of the canonical indigenous bundle (£,V¢)
15 étale over k.

Next, let us observe that for any = € X (k), the completed local ring R, of X at x
(which is formally smooth of dimension one over A) is naturally isomorphic to the universal
deformation space of the p-divisible group G'°%|,. Indeed, it follows from the theory of
[Mess] that deformations of G'°2|, are given by deformations of the Hodge filtration; thus,
our observation follows from the fact that the Kodaira-Spencer morphism of the Hodge
filtration of (£, V¢) is an isomorphism. Now suppose that x € X (k) is supersingular. Then
the isomorphism

G'8| po = G'8,

obtained above from the double iterate of Frobenius induces a natural isomorphism of
complete local rings

V,:R 2 =R,

which will play an important role in the sequel.

Now fix a number n > 1, and let Y = Xy(n). If x € X (k), let us denote by X, the
formal spectrum of X at z, i.e., Spf(R;). We will use similar notation for Y. Over Y, we
have a tautological cyclic isogeny of order p™:

Glﬁg _ H;Jg
Fix a supersingular z € X (k). By the analysis of [KM], reviewed in §2, there exists a

unique y € Y (k) lying over . Now by thinking of the completed local rings of X as
universal classifying spaces, we obtain a morphism:

(Dy,Ry) : Yy — Xm X A Xan
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where D, is the classifying morphism for the “domain p-divisible group” Glyog , and R, is
the classifying morphism for the “range p-divisible group” H;ﬁ’g. Here we use the fact that
restricted to x, the tautological isogeny is just the nt" iterate of the Frobenius morphism, so
HYE|, = GLOEn. Also, note that by the deformation theory of [Mess|, a deformation of the
tautological isogeny is uniquely determined by the induced deformations of the domain and
range p-divisible groups. It thus follows that the morphism (D,, R,) is formally unramified,
hence a closed immersion. Thus, henceforth, we shall think of Y, as a formal divisor inside

X, x X,rn by means of the closed immersion (D, R,).

One of the most important properties of this divisor Y, is its symmetry. More precisely,
given Y, , one can obtain a divisor in X r» x X, in two ways:

1) by applying the isomorphism X, x X _r» = X_r» x X, given by switch-
Yy ying x x g y
ing the two factors;

(2) by conjugating first by the n'" power of Frobenius, so as to obtain a
divisor in X, r» X X _r2n and then applying the isomorphism Spf(¥,)™"
to the second factor.

Then we claim that these two divisors in X, r» X X, are the same. Indeed, to see this,
it suffices to trace what happens to the tautological isogeny. Let us consider the second
procedure stated above. First, we conjugate the tautological isogeny by Frobenius:

logy F™ log\ F™
(GR8)™ — (1)
Since at 7, this isogeny is just the n'* iterate of the Frobenius morphism, by looking at

Dieudonné modules, it follows that the kernel of this isogeny is contained in the kernel of
multiplication by p™. Thus, we get a morphism

(Hy)™ = (@)™
Since (H}fg)Fn = (Glyog)F%, we thus see that the divisor in X, s x X, obtained this
way is just the divisor of isogenies (lifting the n'" iterate of Frobenius) from the universal
deformation of GI°¢ (pulled back from the second factor) to the universal deformation of
(G'98)F" (pulled back from the first factor). On the other hand, it we look at the divisor
obtained from the first procedure stated above, it admits exactly the same description.
This proves the claim.

The next important property of this divisor Y,y C X, x X rn is that if we restrict it
to the ordinary locus, it becomes equal to the union of the “local versions” of the schemes
X (a,b)°*® (described at the end of the preceding subsection). More precisely, X (a,b)°*

is defined as a closed subscheme of X°'¢ x (X°ord)F “". Thus, we obtain X (a,b)"d|x, C
(xord x (Xord)Fafb)Xx by restricting to the formal scheme X,. Since a —b =a+b =
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n(mod 2), by applying the appropriate power of W,, we thus obtain a subscheme, which
we shall call

X(a’b)grd C (Xord % (Xord)F“)XI

Then it follows from the functorial definition of Y (in terms of parametrizing isogenies)
that

Yy | xora = U X (a, )2 (disjoint union)
a+b=n

Let us denote the supersingular divisor of X by X®°. We are now ready to summarize
what we have done:

Definition 3.3. We shall call the pair

He = (V3 0,)

consisting of the divisor ¥, € X, x X r» and the isomorphism ¥, the nt" canonical local
Hecke correspondence of X'°% at . We shall call the triple

(Y — X; B35 {Ho boexs)
the n'" canonical pseudo-Hecke correspondence of X'°%.

Of course ideally, the local Hecke correspondences H, would glue together to form a
global Hecke correspondence, i.e., a morphism ¥ — X x X", just as in the classical case
with modular curves. We shall investigate this issue in the next subsection, but (unfortu-
nately) what we shall find is that the existence of such global Hecke correspondences is a
rather rare phenomenon.

Global Hecke Correspondences
We maintain the notation of the previous subsection.

Definition 3.4. We shall say that the canonical curve X'°¢ admits a global n** canonical
Hecke correspondence if there exists a morphism

(D,R):Y — X x X"
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that is equal to the local morphisms (D,, R, ) of the preceding subsection for every y € Y
lying over a supersingular point of X. We say that X'°% is of Hecke type if it admits a
global n*" canonical Hecke correspondence for every n > 1.

Proposition 3.5. Suppose that there exists an isomorphism W'°s . Xlos _ (Xlog)F2 that
induces the morphism Spf(V,) when localized at every supersingular x € X. Then X'°8 is
of Hecke type.

Proof. This follows immediately from gluing together Y ' with the various Y,’s by means
of Wloe, ()

Corollary 3.6. Suppose that X'°%, along with all of its supersingular points are defined
over F,2. Then X2 s of Hecke type.

Proof. Over F2, one can take U'°8 to be the identity, for (by functoriality) the ¥,’s must
all be the identity. O

The classical example of a case where X'°8 is of Hecke type is the case where X'°8 =

Mﬁ%, the compactified moduli stack of elliptic curves (over Z,). This case is studied in
detail in [Shi], Chapter 3. To see that the supersingular points are defined over F 2, one

repeats the argument preceding Proposition 3.2, to obtain an isomorphism E¥’ ‘>~ F for
every supersingular elliptic curve E.

Suppose that X% is canonical of Hecke type. Then we remark that just as in the

classical case, one can define Hecke operators on H?(X, (wl)?fs)‘@N )q, (as well as one the
étale cohomology of X lof, etc.). Moreover, (by the same proofs as in the classical case)

the effect on g-expansions (where ¢ is the Serre-Tate parameter at a marked point) is the
same as in the classical case. (See, e.g., [Lang] for more details.)

Next, we justify the assertion (made in the preceding subsection) that, in some sense,
being of Hecke type is a rather rare phenomenon. Indeed, if X'°% admits a global first
canonical Hecke correspondence, consider its reduction modulo p:

(D, R)¥, : Yr, — X¥, X Xg

Let Z = Yg,. Then Z = Z'|JZ", with Z' mapping isomorphically to Xy via Dg_, and
p 1 p P

DFP|Z// isomorphic to the Frobenius morphism from Z" = X]_fp to Xg,. On the other

hand, Ry, must map Z" isomorphically to Xgp. Thus, Z” is isomorphic to both Xgp_l

and X{f . In particular, Xp = XII?Q, i.e., the moduli of Xg are defined over F2, which
P p P P
is a very rare phenomenon.
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Remark. At the present time, the author does not know of any canonical X'°& of
Hecke type, except for those that arise directly from the modular case.

§4. p-adic Green’s Functions

In this Section, we give a geometric criterion for a curve to be canonical: namely, the
existence of a Frobenius lifting of the right height, over an open p-adic formal subscheme
of the curve, with “nice behavior” at the points where it is not defined. We will make
these terms precise below, but the point of interest is that this criterion does not depend

on knowing the action of the canonical Frobenius ®x on N ng — that is, it is intrinsic
to the curve — and, moreover, it is not phrased in terms of indigenous bundles. Now in
the case of elliptic curves (regarded parabolically), the canonical lifting defined in terms
of indigenous bundles is the same as the canonical lifting defined in Serre-Tate theory
(one of the definitions of which is the existence of a global Frobenius lifting). Thus, it is
interesting to note that the existence of an “admissible Frobenius lifting” amounts to just
the existence of a Frobenius lifting (in the case of elliptic curves). In other words, one
may regard the geometric criterion given here as the proper hyperbolic generalization of
the statement that an elliptic curve (whose reduction modulo p is ordinary) is Serre-Tate
canonical if and only if it admits a Frobenius lifting.

Compactified Frobenius Liftings

In this subsection, motivated by the construction of the pseudo-Hecke correspondences
in the previous Section, we define the general notion of a “compactified Frobenius lifting.”
Let X8 — S8 be a smooth r-pointed curve of genus ¢. Let

(blog . Ylog N Xlog

be a finite, flat morphism such that Y is regular (necessarily of dimension two), and the
log structure on Y'°8 is defined by a divisor on Y which is étale over A and equal to the
set-theoretic inverse image of the divisor of marked points of X. Let U C X be an open
formal subscheme that contains all the marked points. We endow U with the log structure
pulled back from X8, and call the resulting log formal scheme U'°8. We shall use the
notation X, Yy, etc. (as in the previous subsection) to denote the formal schemes which
are the formal neighborhoods of the closed points z, y, etc. Suppose that

q)log . Ulog N (Ulog)F

is a Frobenius lifting.

Definition 4.1. We shall say that (¢'°% : Y'°8 — X1°8:,) is a naive compactification of the
Frobenius lifting ®'°8 if, when we take V = ¢~1(U), the following conditions are satisfied:
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(1) V'°8 splits as a disjoint union (V°2) | J (V'°8)";
(2) ¢8|y : (Vo) — U is an isomorphism;
(3) g : (Vios)” — (U8)F " is an isomorphism;

(4) ¢'5|yn o (J1o8) =1 : (U8)F" — U8 is the morphism (®1°8)F "

We shall frequently identify V/ and U, and V" and UF .

Suppose that (¢'°2;(1°%) is a naive compactification for ®!°¢. Note that ¢ is necessarily
of degree p + 1. Also, note that V' admits a canonical embedding

L(1,0) * V' — U x UF

where we take ¢(1,0y = (id, ®), while V" admits an embedding

L0,1) : Ve UxUF

—1

where we take (g 1) = ((®)F ,id).
Let x € X (k). Let

\IJ:E . RCUFz = Rx

be an isomorphism. Suppose that y € Y (k) maps to . Let

(Dy,Ry): Y, — X; x X,r
be a closed embedding, where D, is obtained by restricting ¢.

Definition 4.2. We shall say that H, def (Y43 (Dy,Ry)) is a local compactification for the

Frobenius lifting ®'°% at x (relative to (¢'°8;11°8) ) if

(1) y is the unique closed point of Y lying over z;

(2) the divisor Y, — X, x X, r is symmetric in the sense that the two
divisors that it induces in X, r x X, (by switching and by Frobenius-
conjugating, then applying W, ) are the same;

(3) the restriction of (D,,R,) to V is the union of ¢(; o), and (L(071))F2

composed with Spf(¥,)~1 x (id).
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Note that by the first condition,  cannot lie in U. Now let us consider (Y,)z/p2z. Since
Y, € X, x X,r, it follows that (Y),)z/p2z is Spf of a local ring of the form:

R < (A/p*A)[[E, )/ (&)

where { is a local parameter for (X;)z/p2z, and n = ¢ is the Frobenius-conjugate local
parameter for (X r)z/p2z. Since Y, — X, is flat, the last condition implies that (Y, )r,
has exactly two irreducible components, both of which are reduced. Thus, if we denote by
a “bar” the reduction of functions modulo p, we see that ¢ is a product of two distinct

prime elements of k[[¢,7]]. In fact, we can say more. Outside the special point of (Y,
_ 2

these two primes define the closed subschemes E” —nand 7P — W, (& r ). Let

f=€—n g=n" -V, (")

Thus, we may assume that ¢ = f - §. In other words, we can write

Yp=[f-g+m

where 7 € p - k[[€,7]]. In fact, 7 is actually p times a unit in k[[£,7]], since Y, is regular.

So far we have been working with functions on (Y, )z/p2z. Now let us restrict to
functions on the open formal subscheme D(g) C (Y,)z/,2z (i.e., where g is invertible).
Thus, we are in effect restricting to the graph of ®. Let us denote the restriction morphism
on functions by ¢ : R — R[1/g]. Then we obtain, in R[1/g],

¢(n) = ¢&)F +¢(m) - ¢g) ™"

By interpreting this open formal subscheme D(g) as the graph of @, this tells us that
d~1(¢F) is a function which is not regular at x, but has a pole of order one (since g has a
zero of order one). In particular, it tells us that the Frobenius lifting ® does not admit a
regular extension to any neighborhood of x. We summarize this as follows:

Proposition 4.3. If H, is a local compactification of ®'°¢ at x, then (Yy)r, is a node,
and x ¢ U. Also, the Frobenius lifting ® does not admit an extension to any neighborhood

of x.

Definition 4.4. We shall call

C = (¢"°%; %% {Ma}ag)
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a compactification of the Frobenius lifting ®'°8 if (¢;1) is a naive compactification of ®'°8,
and for each x ¢ U, we are given a local compactification H, of ®'°% relative to (¢;¢)
(where k in the definition above is replaced by the field of rationality of z).

Thus, in particular, by what we did in the last two subsections,

Proposition 4.5. Suppose that X'°% is a canonical curve. Then its first canonical

pseudo-Hecke correspondence is a compactification of the canonical Frobenius lifting on
(Xlog)ord'

Suppose that (¢'°%;.1°%; {H,},¢r) is a compactification of ®'°8. Let us consider Z def
Y, . It follows from the above definition that Z is reduced and has exactly two irreducible
components Z' and Z” with V]_ép c 7 V]ji’p C Z”. Since Z' is geometrically connected,
smooth, proper, and birationally equivalent to Xg, over k, it follows that Z’ = Xg .
Similarly, Z" = Xgp_l. Moreover, except at the points of intersection of Z’ and Z” (which
are nodes), Z is smooth over k.

Proposition 4.6. (Assuming that X'°® is hyperbolic) Y must be connected.

Proof. 1t suffices to prove that Z is connected. Suppose that Z is not connected. Then
¢z : Z' — Xy, is finite and birational, hence an isomorphism. It thus follows that Z’
lifts to a connected component Y’ of Y such that ¢y, : Y/ — X is an isomorphism.
On the other hand, Z” is proper and smooth over k, and birational to Xgpfl, hence

A= lep_l, and @|z» : Z" — X, is the Frobenius morphism. Moreover, Z" lifts to a
connected component Y of Y. Thus, ¢|y+ : Y — X is a Frobenius lifting. But if X'°® is
hyperbolic, such Frobenius liftings cannot exist, for the nonzero morphism of line bundles
(gb|yu)*wl§§ g — wi® /5 Violates degree restrictions. O

The Height of a Frobenius Lifting

Finally, we note that often it is useful to have a precise measure of how far a Frobenius
lifting fails to extend over all of X. For this, we introduce the notion of the height of a
Frobenius lifting, as follows.

Let 7 — Xg, be the Tp -torsor of Frobenius liftings on open sub-log schemes of
XlzO /gPQZ. Thus, if ®'°& : U°e — (Ue)F is a Frobenius lifting, its reduction modulo p?
defines a section o¢ : Up, — F of this torsor. Let P be the projective bundle that
canonically compactifies 7. Thus, P — X, is a P!-bundle. Recall the notion of the
canonical height of a section of P — X, introduced at the beginning of Chapter I, §2.
Since Xg, is proper over k, it follows that o extends uniquely to a section ¢ : Xg, — P.
We now make the following
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Definition 4.7. We define the height ht(®) of the Frobenius lifting ®°¢ to be the canonical
height of the section g of P — Xp, .

More concretely, the height of ®'°¢ can be defined as follows. If 2 € Xif pg , then let ¢ be a

local parameter of X'°8 at . Let =, be a local Frobenius lifting defined in a neighborhood
of x. Then %(E;l(t) — ®~1(t)) is a rational function d, on Xif’f. Let us say that the local

height ht,(®) of ®°8 at x is:
(1) equal to 0 if this function J, is regular at x;
(2) equal to the order of the pole of d, at x otherwise.

Then we have the formula:

Proposition 4.8. We have

Bt () + g(Zg —247) = 3 [k(@) : K] ht, (®)

log

:reXFp

Proof. This follows immediately from considering the intersection number of 74 with the
“section at infinity” given by the complement of F in P. ()

Corollary 4.9. If ®'°¢ admits a compactification, then the local heights at points outside
U are all one. Thus,

ht(®) = —%(29 —2+4+7r)+deg, (X —U)p,
where we regard (X — U)r, as having the reduced, induced scheme structure.

Proof. The statement about local heights follows from the explicit computation preceding
Proposition 4.3. O

The following is the main result of this subsection:

Proposition 4.10. If ®'°¢ has height < 1—g— %r, then P (with its connection V p induced
by that of F) is a nilpotent, admissible indigenous bundle. In particular, if (P,V p) is also
ordinary, then X'°% is isomorphic to a canonical curve modulo p*, and ®'°% is equal to the
canonical Frobenius lifting (of Theorem 3.1) modulo p?.
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Proof. Indeed, suppose that ht(®) <1—g— %r. Consider the Kodaira-Spencer morphism
of the section 74 of P — X. By the general properties of FL-bundles (Chapter II, §1),
we know that the Kodaira-Spencer morphism cannot vanish (for the section at infinity of
P — X is the unique horizontal section). But by degree considerations (i.e., the assumption
on ht(®)), once the Kodaira-Spencer morphism is nonzero, it must be an isomorphism. It
thus follows that P (with its connection induced by that of F) is a nilpotent, admissible
indigenous bundle. The last statement follows from the construction of the canonical lifting
and the canonical Frobenius. ()

Thus, we see that the compactified Frobenius liftings that we are really interested in
are the ones that “look nice modulo p:”

Definition 4.11. A compactified Frobenius lifting

C = (¢"°%;0°%; {Ha}agu)

is called admissible if

(1) ht(®) = g — 1 + 57
(2) the associated (P, Vp) (as in Proposition 4.10) is ordinary;

(3) the reductions modulo p of the isomorphisms ¥, (that make up H,)
are equal to the canonical “¥,” of Definition 3.3.

Note that for an admissible compactified Frobenius C, all the objects involved (that is,
Plog; gloe ; yloe , xlog, los; . (D,, R,)) are completely determined modulo p (up to
isomorphism) once one fixes the supersingular divisor (X — U)g,. Or, in other words,

Proposition 4.12. An admissible compactified Frobenius C on X'°8 determines a p-adic
quasiconformal equivalence class o to which X'°8 belongs. If two admissible compactified
Frobenii C and C' on X'°% determine the same o, then, modulo p, all the objects that make
up C are isomorphic to those that make up C’.

Admissible Frobenius Liftings

Since an admissible compactified Frobenius is determined modulo p by the p-adic
quasiconformal equivalence class «, the next step is to understand what the possible de-
formations looks like. Let C be an admissible compactified Frobenius, and let us consider
Cz/p2z, 1.€., the reductions modulo p? of all the objects involved. Suppose we start with
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the data (®'8)z ,27; (V4)z/p2z (for all supersingular ). Now it is easy to see (by looking
at points valued in an arbitrary scheme) that the symmetry condition on the divisor Y,
amounts to the statement that (¥, )z/,27 restricted to the ordinary locus commutes with
(ﬁz/pQ Z-

Let 8 be an automorphism of (X)z/,2z which is equal to the identity modulo p. Then
we claim that if @7,z commutes with 3, then 3 is the identity. Indeed, since derivations
on Xg, act trivially on functions that are pt" powers, we get that

Pz/p2z 0 0= Pz/p27

Thus,

B 0 Oz 27 = Pzyp2z

which implies that (3 is the identity, since @727 is faithfully flat. Thus, in summary, the
(Vy)z/p2z are determined uniquely by the condition that they commute with ®z /.27,

Next, we consider Y'°8. We can break Y'°¢ up into three parts: (V1°8)’; (V1°8)"; and
the Y,’s. Since (V1°8)" and (V!°8)" are determined up to natural isomorphism by X8, it
remains to determine the Y, ’s, and the gluing morphisms. But Y, and its gluing morphisms
to (V1°8)" and (V1°8)" are completely specified once one knows the divisor Y, in X, x X xr.
Moreover, it follows from the condition (3) of Definition 4.2, that this divisor is determined
by ® and ¥,. But we just saw that (V,)z /27 is determined by ®z/,27. Thus, we conclude
that (H,)z /p2z and ¢lzo/gp2 7 are completely determined by ®z/,27. Sorting through all the
definitions, we thus see that we have proven that Cz/,2z is entirely determined by the
p-adic quasiconformal equivalence class « and the deformation ®z,,27. Moreover, there is
nothing special about working modulo p?: the same arguments can be made modulo an
arbitrary power of p. Thus, we see that we have proven the following result:

Lemma 4.13. Let C be an admissible compactified Frobenius lifting on X'°8. Then Cz/pnz
15 completely determined by (IDlzofan.

This Lemma suggests the following definition:

Definition 4.14. Let o be a p-adic quasiconformal equivalence class to which X8

belongs. Let U C X be the ordinary locus for a.. Let ®'°8 : /'8 — (U'°8) be a Frobenius
lifting over U'°8. Then we shall say that ®'°% is an admissible Frobenius lifting for (X'°8, a)
if it arises from a (necessarily unique) admissible compactified Frobenius C.

Thus, we can can regard admissible Frobenius liftings as being Frobenius liftings (over the
ordinary locus) that happen to have special behavior near the supersingular points.
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Next let us consider two admissible Frobenius liftings ®!°¢ and (®'°8)’ on the same
curve X'°2, Let us suppose that they are equal modulo p™ (where n > 2). In this discussion,
we shall always be working modulo p"*1, so (by abuse of notation) we shall use ®'°¢ and
(®'°8)’ to denote the respective reductions modulo p"*!. Now just as in the discussion
preceding Proposition 4.3, for ®'°8, (Y,))z/,n+17 is Spf of a local ring of the form:

R (A/p™ A€, m)] /4 (€,m)

where ¢ is a local parameter for (X, )z/pnt17, and 7 = £ is the Frobenius-conjugate local
parameter for (X,r )z /pnt+1z. Moreover, we may assume that

Yp=1Ff-g+m

where

F=€—m; g=n" -V, (c")

and 7 € p- (A/p"A)[,7]]. In fact, 7 is actually p times a unit, since Y, is regular.
Similarly, for (®'°8)’, we have

R (A/p" A€, )] /4 (€,m)

withy' = f-¢ +7',and ¢ =nP — \If;(flﬂ) Thus,

g=g¢'(mod p"); 7w =n'(mod p")

So far we have been working with functions on (Y} )z/pnt+1z. Now let us restrict to
the open subscheme corresponding to the graph of ® (or ®). Let us denote the restriction
morphism on functions by . Then we obtain, on this open subscheme, in the unprimed
case:

¢(n) = CE&)P +¢(m) - Clg)

and, in the primed case:
¢(')
7r

= + (g
= (&) +¢(x) - C(g)

g

(9)”
since the difference between g and ¢’ becomes zero when multiplied by p. Ultimately, we
are interested in computing the difference between the two Frobenius liftings ® and ®’.
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That is, we wish to understand the difference between where 7 is taken by the two liftings.
But by the above formulas, the difference is of the form:

{¢(m) = <)} (S

Moreover, because the difference in brackets is divisible by p™, only the residue of ¢ modulo
p is involved in the above expression. Since this residue has a zero of order exactly one at
x, it follows that the difference between the two Frobenius liftings — which forms a section
of T, over X ord _ has poles of order at most one at the supersingular points. Since the
morphism

HTFP . TFP — (TXlog/Slog)Fp

(given by composing the p-curvature of (P, Vp) with the projection given by the Hodge
filtration) has zeroes at the supersingular points, it thus follows that the difference between
®'°8 and (9'°%)" defines a global section of (Txios g0z )F,. Since we are dealing with hy-
perbolic curves, though, (7x1s/g10s)F, has negative degree, hence has no global sections.
Thus, ®°¢ = (®'°8)’. In summary, we have proven the following strengthened form of
Lemma 4.13:

Lemma 4.15. If there exists an admissible Frobenius lifting of (X'°%, a), then it is unique,
and contains no nontrivial deformations modulo any power of p.

Geometric Criterion for Canonicality

Let us fix X8 — §'°8 a smooth r-pointed curve of genus g, and a p-adic quasicon-
formal equivalence class o to which X8 belongs. Let ®!°% be an admissible Frobenius
lifting for (X8, ).

Now suppose that Xlog —, §log is also a smooth r-pointed curve of genus g such that

()Z log)Fp = Xi-,? pg. The following “Rigidity Lemma” is fundamental to this subsection:

Lemma 4.16. Suppose that (X'°%, «) admits an admissible Frobenius lifting (®'°8). Then
)Z'log — Xlog'

Proof.  We propose to prove inductively (on n) the following statement:

(*) (X'°8, (®'°8)’) coincides with (X'°&, $!°8) modulo p" .

We know that this statement holds for n = 0. Assume that it holds for n — 1. Consider
the difference between the deformations XlzO /gpn 115 and X;) /gpn +1g Of X;) /gpnz. It defines a
class
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p e H (X, (Txos ) g108)F,)

Let C (respectively, C’) be the compactified Frobenius corresponding to ®!°¢ (respectively,

(®'°8)"). Since Yzlc}i ny = (Y108), Jpnz> We can consider the difference between the defor-
mations Yzl(;i i1y and (Ylog),, iz, of Yzl(;i .z~ This gives us a class

1
S EXtYFp (leiog/k, OYFP)
P

Since ¢z/prz = ¢ Iz the pull-back map defined by either of these morphisms gives us
amap ¢ ! : ¢*(wl)‘;§ $)F, — QYFlc;g Ik which is generically zero over the component of Y,

that we called Z” in the proof of Proposition 4.6. Now ¢! induces a pull-back morphism
on global Ext’s

w . EXt%/Fp (QYl},Og/k7 OYFP ) — H]- (1/]:7177 ¢* (TXlog/Slog)Fp)

The condition that the morphism ¢z, n+17 deform compatibly with the deformation of
(X', Ylog)z/pn+1z to (X'°8, (Y’)log)z/anz to a morphism gb’z/anZ is exactly that

(V) = lye,

Note that this condition, as well as the cohomology modules in which x and v live,

are independent of n. Thus, by adding ;1 and v to qﬁlzoprZ : Yzlc}i 2g — XIZO /gPQZ, we obtain

a new morphism ¢'°8 ; Ylog — Xlos (of Z/p?*Z-flat schemes). Then, by restricting $°8 to
the open subscheme of Y1°% defined by the ordinary locus of Z”, we obtain a Frobenius
lifting Z!°¢ on the ordinary locus of X'°¢. The only points at which Z is not defined are
the supersingular points (determined by «)). Moreover, by the calculation of the discussion
preceding Proposition 4.3, it follows that the local height of Z!°¢ at a supersingular point

«, 9 e

is < 1. Indeed, in the notation of loc. cit., “w” is equal to p times an element of k[[£,7]],
which, this time, might not be a unit since ylog might not be the reduction modulo p? of
a regular scheme; hence the inequality < 1, rather than the sharp equality = 1. At any
rate, it thus follows that ht(Z) < ht(®z,,27). But then, by Proposition 4.10, X is equal
to some canonical curve reduced modulo p?, and, by Proposition 2.6, (4), of Chapter I, it
thus follows that this canonical curve is the one determined by a. Thus, Xlog = XlzO /gPQZ.
But this means that p = 0, so X'°® and X'°¢ coincide modulo p"tl. By Lemma 4.15
(the rigidity of an admissible Frobenius lifting), it thus follows that ®°& and (®'°8)" also
coincide modulo p™**!. This proves the induction step, and hence the Lemma. (O

Putting everything together, we see that we have proven the following geometric
criterion for a curve to be canonical:
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Theorem 4.17. Let X'°¢ — S°% be q smooth r-pointed curve of genus g. Let o be a
p-adic quasiconformal equivalence to which X'°8 belongs. Then X'°% is canonical if and
only if (X'°8, ) admits an admissible Frobenius lifting.

Proof. We saw in §3 that a canonical curve admits an admissible Frobenius lifting. On the
other hand, given an (X'°8, o) which admits an admissible Frobenius lifting, there exists
an (X'°8 o) (with X8 = X'°8 modulo p) which is canonical, hence admits an admissible
Frobenius lifting. Thus, by Lemma 4.16, it follows that X'°8 = Xlos, O

Definition 4.18. Suppose that (X'°, «) admits an admissible Frobenius lifting ®'°8.
Then we shall call '8 the p-adic Green’s function.

Remark. The justification for this terminology is as follows. In the classical complex case,
one of the main approaches to proving that hyperbolic curves can be uniformized by the
upper half plane is given by constructing a Green’s function on the universal covering
space of the Riemann surface (see, e.g., [FK]). Once one proves that the universal covering
space is just the upper half plane, then one sees that this Green’s function is really just
the logarithm of the hyperbolic distance between two points. On the other hand, the
canonical Frobenius lifting ®'°¢ may also be regarded as giving us a notion of distance
on X8 Indeed, in the classical modular case, where X'°% parametrizes elliptic curves, if
one can get from point a to point b by applying ®°% a total of N times, then it means
that the corresponding elliptic curves are isogenous via a cyclic isogeny of order p~v. Thus,
the analogy between ®'°8 and the classical complex Green’s function (which is just the
logartihm of the hyperbolic distance) will be established once one accepts that isogeny
is the proper analogue of distance. But to see this, one need merely think of lattices in

12,, which one can draw schematically as a graph. Then two lattices are related by an
isogeny of order pv if and only if they are N edges apart on this graph. This establishes
the relationship between isogeny and distance.

Remark. We also observe that for elliptic curves (regarded parabolically), the same defi-
nition of compactified Frobenius liftings, and admissible Frobenius liftings goes through,
but everything is trivial, since there are no supersingular points to contend with. Thus, we
(trivially) obtain the analogue of Theorem 4.17: that an elliptic curve over A with ordinary
reduction is canonical if and only if it admits a Frobenius lifting defined everywhere on the
curve.
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Chapter V: Uniformizations of Ordinary Curves

§0. Introduction

Having studied the case of canonical curves in the previous Chapter, in this Chapter
we turn to the case of arbitrary curves with ordinary reduction modulo p. We do this by
working with the universal case: i.e., the universal curve over the moduli stack. Unlike
the canonical case, one does not quite obtain such objects as the canonical Galois rep-
resentation or the canonical log p-divisible group over the given base. Instead, one must
pass to various “schemes of multiplicative periods” — i.e., certain infinite coverings of the
original base — in order to obtain such objects. On the other hand, since these objects
are canonically associated to the curve over the given base, it is natural to guess that they
should descend from the scheme of multiplicative periods back down to the original base in
some appropriate sense. The key idea here is that, for instance in the case of the canonical
Galois representation (which is fundamental to the construction of all the other objects),
if one works with modules of rank two, not over Z,, but over some appropriate ring of
p-adic periods D!, then one can in fact construct a canonical Galois representation over
the original base. Thus, one obtains a representation of the entire arithmetic fundamental
group into GL;E (D2, which in some sense extends the representation of the geometric
fundamental group into GL;E(Zp). Moreover, (in the hyperbolic case) this representation
of the arithmetic fundamental group into GL3 (D%?!) is canonical, and dual crystalline in
some appropriate sense, despite the fact that (unlike the case handled in [Falt], §2), it is
on a space of infinite rank over Z,. The process of passing from the canonical representa-
tion of the geometric fundamental group into GL;E(ZP) to the canonical representation of
the arithmetic fundamental group into GLQjE (D3 is a sort of crystalline analogue of the
notion of an induced representation in group theory. We therefore refer to this process as
the process of crystalline induction.

Once one has this canonical dual crystalline representation of the arithmetic funda-
mental group into GL2i (D), one can linearize the obstruction to extending the repre-
sentation of the geometric fundamental group into GL;E(ZP) to the full arithmetic funda-
mental group. This linearization tells one, for instance, that as soon as one can extend
the representation of the geometric fundamental group into GL%E(Zp) at all to the arith-
metic fundamental group, this extension is automatically dual crystalline. This procedure
of linearizing the obstruction also allows one to see that this obstruction is precisely the
hyperbolic analogue of the obstruction to splitting a certain exact sequence of p-adic local
systems on the moduli stack of ordinary elliptic curves (in the parabolic case).

§1. Crystalline Induction

In Chapter III, we constructed a Frobenius-invariant indigenous bundle on the univer-

—ord . . . .
sal curve over Ng - Unfortunately, unlike the case of a canonical curve, such information
?
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does not immediately constitute an object of the category MFY (see [Falt], §2), so we
cannot immediately convert it into a Galois representation. The problem is that our con-
nection on the indigenous bundle is only a relative connection (for the universal curve over

N fo ), not a full connection on the total space of the universal curve. Also, the obstruction
to extending it to a full connection on the total space of the universal curve is nonzero.
Thus, in order to obtain a Galois representation, we must replace the indigenous bundle
by a certain natural “thickening” of the indigenous bundle. This thickening formally car-
ries the structure of an object of the category MFY, but has the disadvantage of being
of infinite rank, so that we cannot immediately apply the theory of [Falt] to this object.
Fortunately, it is not difficult to extend the theory of [Falt] so as to handle such objects of
infinite rank. We thus obtain a Galois representation, as desired, which turns out to be a

sort of crystalline analogue of the notion of an “induced representation” in group theory.

The Crystalline-Induced MFV-object

Let p be an odd prime. Let S be formally smooth over A def W (k), where k is a perfect
field of characteristic p. Let us assume that S is endowed with a log structure induced by
a relative divisor with normal crossings over W (k). Let S'°® be the resulting log formal
scheme. Let f18 : X198 — S8 he an r-pointed stable curve of genus g. Also, let us assume
that the classifying morphism S — M, . defined by f°¢ is étale. Let ®'°8 : Slo8 — Glog
be an ordinary Frobenius lifting.

Now let us suppose that our indigenous bundle (£, V¢) on X'°8 is invariant under the
renormalized Frobenius (Chapter 111, Definition 1.4): that is,

@5 : (5, Vg) = F*Slog (57 v5)<1)

where the superscript “®” denotes pull-back by ®, and the subscript “S'°8” denotes that we
are considering the relative renormalized Frobenius pull-back over S'°%. (We shall denote
by F* the renormalized Frobenius pull-back over A.)

Let Dg be the quasi-coherent Og-algebra (with the Og-action from the right) which is
obtained by taking the p-adic completion of the PD-envelope of the diagonal embedding of
Slog in G108 x 4§18 (see, e.g., [Kato], §5.8). Thus, Dg has an ideal Zg C Dg with Dg/Zg =
Og, and Zg/T2 Q?/gA = Q?g. Note that Dg has a natural logarithmic connection
Vps. We shall regard Dg as a filtered object with connection, whose filtration is given by
Fi(Ds) = Ig] (i.e., divided powers of Zg). Thus, the Kodaira-Spencer morphism for the
subquotient of the filtration given by F'(Dg)/F?(Dg) = Is /T2 = Q$% is the identity map.
Note that the Frobenius lifting ®'°% on S'°¢ induces a morphism ®p, : #*Dg — Dg which
preserves the Hodge filtration. Finally, let us denote by ((Ds)x, V(py),) the pull-back of
(Ds,Vpg) to X8,

Next, let us consider the obstruction to defining a full logarthmic connection V on &
(i.e., relative to X'°& — Spec(A)) with the following properties:
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(1) V has trivial determinant;
(2) the restriction of V to a relative connection (for X8 — §°8) is V¢;

(3) the curvature of V is an Ad(&)-valued section of /\Zngg (i.e., the

wl)?i g ®og Q?g—part of the curvature vanishes).

It is easy to see that the obstruction class to defining such a connection is a section ng of

R! fpr.Ad(€) ®o. Q58 = FO(R! fpr »Ad(E) ©0, Q92

whose projection to le*TXlog/Slog Rog Q?g is the identity. Also, note that ®'°% and ®¢

induce a Frobenius action on R! fpr . Ad(€) ®o, Q?g, which, by naturality, preserves ng¢.
Thus, in particular, we see that unless we modify £ in some way, there is no hope of
constructing a full connection V as specified above.

PD
Thus, we make the following construction. Let us write S8 x S for Spf(Dg)
(where we take “Spf” with respect to the p-adic topology). Similarly, we shall write

PD PD PD
Slog - Glog ¢ Gloe  xlog o Xlog  etc. for the obvious p-adic completions of PD-

envelopes at the respective diagonals. Also, we have two projections 7g, 7, : S8 x
Slog — §1o8 o the left and right by which we can pull-back X' — S8 to obtain curves

PD PD
(Xlog)b — Glog ' Glog and (X°2)R — Glog x Glos  Moreover, both of these curves

PD
form PD-thickenings of X8 — Slog ., Glog '\ Glog (where the second morphism is the
diagonal embedding). It thus follows that if we pull-back (€, V¢) to obtain an indigenous

PD
bundle on the curve (X!°8)L — Glog » Glos  this indigenous bundle defines a crystal

on Crys(X'oe /(S i~ S'°8)) which we can then evaluate on the thickening (X&)} to
obtain a rank two vector bundle & (on X®). If we then push this sheaf £ forward via the
projection X® — X, we obtain a quasi-coherent sheaf £p on X. Moreover, £p has the
structure of a Dg-module, hence of a (Dg)x-module. In fact, Ep is a locally free (Dg)x-

module of rank two. Moreover, £p is equipped with a natural Hodge filtration compatible
with that of (Ds)x.

Next, we would like to equip Ep with a full logarithmic connection that is compatible
with its structure as a (Dg)x-module and the connection on (Dg)x. First, note that

PD PD PD PD ' ' '

Xlog ' Glog o Glog _, Glog o Glog ' gGlog ig 5 PD-thickening of X'°&8 — Slog
PD PD

Slog " Glog ' §log (where the second morphism is the diagonal embedding). Thus, if we

PD PD PD

pull-back (£,Ve) to X'°8 x S'°8 x S8 we obtain a crystal £’ on Crys(X'8 /(S8 x
PD PD PD PD PD

Slog ' §l8)). On the other hand, S'°¢ x X8 x Xlog — Glog o Glog "y Glog g also

PD PD
a PD-thickening of X'°8 — Glog < gGlog ", Glog '\ Glos  Thys, if we evaluate £ on

PD PD PD PD
Slog ' X198 % X'°8 and then push forward via the projection S8 x Xlo& x Xlos
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Xlos P>]<3 X8 we obtain a sheaf £ on X8 P>? X'°& Now since (Dg)x is equipped
with a connection, the two pull-backs of (Dg)x to X2 P>]<3 X'°g via the two projections
TR, mi o X108 P><D X'og — X198 can be identified; we denote the resulting sheaf of algebras
on X'o8 P>? X8 by (DS)X pp . Then £ is equipped with the structure of a locally free

log « Xlog

(Ds) _ep -module of rank two. On the other hand, from the definition of £p, it follows
Xlog x Xlog

that both (77%)*Ep and (7f )*Ep are naturally isomorphic (as (Dg) _ep -modules) to
Xlog x Xlos

PD
E", hence to each other. This isomorphism (77X )*Ep = (7 )*Ep on X198 x X108 defines
a full logarithmic connection Ve, on Ep (with respect to X'°8 — Spec(A)). Moreover,
one checks easily that this connection is integral.

Finally, we have a Frobenius action

Dep, : Fox (Ep ®ps.ap, Ds) = Ep

Here, in the definition of F,.,, we first pull back the relevant crystal by means of relative
Frobenius, and then consider the subsheaf consisting of sections whose reduction modulo
p is contained in the subsheaf of

Py (€D ©ps 05, Ds)r, = (Px, EF,) ®os Ds
given by
(Pxp, F'(E)F,) ®os Ds C (Px,, EF,) ®os Ds

Theorem 1.1. Ouver X'°8, there exists a natural, locally free, rank two (Dg)x-module Ep
equipped with a Hodge filtration, a full integrable logarithmic connection Vg, (relative to
X'e — Spec(A)), and a Frobenius action

Pep : Fios(E€p ®pg,0p, Ds) = E€p
such that Ep XDy (Ds/Is) =¢£.
The Ring of Additive Periods

Before we can convert the induced object of Theorem 1.1 into a Galois representation,
we must first study the Galois representation associated to Dg, with its natural filtration,
connection, and Frobenius action. Once we have done this, since £p is of finite rank over
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Dg, converting Ep into a Galois representation will be no more difficult than the “classical
case” discussed in [Falt], §2.

Let us first note that, just as when we constructed “canonical affine coordinates” in
Chapter 111, §1, by considering the slopes of the Frobenius action ®p, we obtain a unique
Frobenius-equivariant embedding of Og-modules

log

whose composite with the projection Zg — Zg/Z3 = ngg is the identity. It is here that
we use the divided powers of Zg C Dg. Let us write Geo(Dg) for the subbundle of Dg

generated by Qg?g and Og. Note that Geo(Dg) is stabilized by Vp, and by Frobenius.
Moreover, the Hodge filtration on Dg induces a Hodge filtration on Geo(Dg). Observe
that with this extra data, Geo(Dg) becomes isomorphic to the uniformizing MFY -object
associated to ®°¢ (of Definition 1.3 of Chapter III).

Now we want to pass to Galois representations. Let us assume that we have chosen
(once and for all) a base-point of S that avoids the divisors defining the log structure. In
the following, our fundamental groups will be with respect to this base-point. Since our
construction will be canonical, we can work étale locally on S. Thus, we can assume that
S is affine. We may also assume that S8 is small (in the sense of [Falt], §2): that is, S'°®
is log étale over A[Th,...,Ty] (with the log structure given by the divisor 77 - ... -Ty). We
shall call these parameters T71,...,7T,; small parameters. Then we would like to consider
the ring BT (S51°8) of [Falt], §2. We will not review the definition of this ring here, since it
is rather involved, but roughly speaking, it is obtained by

1) taking the normalization S of S'°¢ in the maximal covering of S'°&
K

which is étale in characteristic zero;
(2) reducing S modulo p and taking its perfection;
(3) taking the Witt ring with coefficients in this perfection;
(4) adjoining the divided powers of a certain ideal to this Witt ring; and

(5) finally, completing with respect to a certain topology.

In particular,

(1) B*(S'#8) is obtained as the inverse limit of a projective system of PD-
thickenings of the OSFp -algebra Sy ;

(2) BT(S™2) has an ideal I C BT (S8) which is Galois-invariant and
such that B*(S%°8)/I+ =2 S” (i.e., the p-adic completion of S).
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Moreover, Bt (5'°8) comes equipped with a natural Frobenius action (which we shall denote
by means of a superscripted “F”), as well as a continuous Wl(Si?g)-action, which commutes
with the Frobenius. The Frobenius invariants of BT(S°8) are given by Z, C BT (S°8).
There is a Galois equivariant injection 3 : Z,(1) < B (5'°8). Frequently, we shall abuse
notation and write 8 € B1(S'°8) for the element of B (S5'°8) obtained by applying 3 to
some generator of Z,(1). Then the Frobenius action on 3 takes 5 to p- 3. We will denote
by B(S'2) the ring obtained from B7T(S'°8) by inverting 4 and p. This completes our

review of Bt (—).

Now let us return to the specific situation we have at hand. By thinking of (Dg, Vp,)
as a crystal, and using the fact that B*(S'°8) is an inverse limit of PD-thickenings of a
certain Og,. -algebra, one can evaluate this crystal on B*(S5%8) (and complete p-adically)

to obtain a B*(S5'°¢)-module which we shall denote by

Ds®p. BT (5°8)

(where the “hat” denotes p-adic completion). Alternatively, one can embed Og into
B*(5'°8) by means of a choice of small parameters, and then take the literal tensor prod-
uct, as described in [Falt], §2. In our situation, however, since we are given a Frobenius
lifting ®'°8, the most useful point of view will be to embed

Og — BF(5'%%)

Og into B*(S'°8) by means of the Frobenius lifting ®'°¢. Indeed, the choice of Frobenius
lifting gives us an embedding of Og into the ring of Witt vectors that appears in the
construction (reviewed above) of BT(S'°8). Then, we may regard the module considered
above as obtained via the literal tensor product with respect to this particular embedding
of Og into BT (S'°8). At any rate, Ds®@o4 BT (5'°8) has a natural filtration and Frobenius
action. Let T'°8 — S1°8 be the finite covering defined by ®!°¢. (Thus, T'°% = S'°2.) Then
D@0, BT (5'92) also has a natural action by 7 (T2%). The reason why we must restrict
to T'°8 rather than considering all of 7 (Sll(()g), is that the way the Galois action is defined
(see [Falt], §2) involves exponentiating the connection Vp,, so in order for the exponential
series to converge, one must be in a situation where the connection acts in a sufficiently
nilpotent fashion. For convenience, let us write Ipies (respectively, TIgus) for m (T}?g)

(respectively, m; (S28)).

Let us recall the uniformizing Galois representation Pey (Definition 1.4 of Chapter
III) associated to the ordinary Frobenius lifting ®'°¢. Recall that P fits into an exact
sequence of Ilzioe-modules

0— O0%(1) — Pey = Z, — 0

The space of splittings of this sequence then forms an affine Z,-scheme, which is the
spectrum of some ring Aff(Py). More concretely, Aff(Py) is a polynomial ring over Z,, in

158



3g — 3 + r variables which is equipped with an action by Iljis. Moreover, the submodule
of polynomials of degree < 1 is given by Py < Aff(Py). We shall refer to Aff(Py) as the
affinization of PY.

Note that Aff(PY) has a natural IIzis-invariant augmentation Aff(PY) — F,. Let
D! be the p-adic completion of the PD-envelope of Aff(P)) at this augmentation. Thus,
Dgal is equipped with a natural structure of Ilji.c-algebra, and, moreover, we have a
[I7i0e-invariant inclusion

Py — Dgal
In other words, Dg may be identified with the ring of additive periods (of Definition 1.5

of Chapter III). On the other hand, since Pe; is the Galois representation contravariantly
associated to Geo(Dg), it follows that we have a morphism

Por — GeO(Ds)V®OsB+ (Slog)

which respects the Hodge filtrations, Frobenius actions (where P, is endowed with the
trivial Hodge filtration and Frobenius action), and Galois actions (by Il ). “Switching
duals,” we thus see that we have a morphism

GeO(Ds) N e\{:@ZZPB-i-(Slog) SN Dgal®zpB+(Slog)

which respects Hodge, Frobenius, and Galois. Next, since Geo(Dg) generates Dg as a
“PD-polynomial algebra” with no relations, it thus follows that we obtain a morphism

Ds — Dg* &z, B (5'%)

which respects Hodge, Frobenius, and Galois. Finally, tensoring with B+ (5°8), we obtain
the following result:

Proposition 1.2. We have a morphism

Ds®o,B1(S°8) — D§ &, BT (5"8)
which respects Hodge filtrations, Frobenius actions, and Galois actions (by Ilpieg ).
The Crystalline-Induced Galois Representation

Let U'°® C X% be a small affine open subset. Choose a Frobenius lifting ¥'°¢ on
U'°g that is compatible with ®!°¢ on S'°8. Thus, U'°® gives us an embedding of Oy into
B*(U'#) which fits into a commutative diagram
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OS N B+(Slog)

l l

Oy — BT (U"®)
We would like to consider

def

Gu = Epo, BT (U®)

where the “V” denotes the dual as a Dg-module. The problem is to show that Gy has
enough Frobenius-invariant sections in the zeroth step of its filtration. The reason that we
cannot apply the theory of [Falt], §2 directly is that the relevant theorem (Theorem 2.4
of loc. cit.) assumes a bound on the number of steps in the filtration of the MFY -object
under consideration. On the other hand, £p has infinitely many steps,

What we can do is base-change Gy by the morphism of Proposition 1.2. We then
obtain a free (D§*®z, BT (U'°¢))-module

Gy

of rank two. Moreover, Gj; is equipped with a Galois action, a Hodge filtration, and a
Frobenius action

F(G1)") = dp

(where the superscripted “F” denotes base-change by the Frobenius on BT (U'°2)).

Proposition 1.3. The submodule

(F(Gy)"

(consisting of Frobenius-invariant elements of F°(Gy;)) forms a free D§*-module EG* of
rank two.

Proof. The proof is entirely the same as that of Theorem 2.4 of [Falt], §2. The point
of base-changing by the morphism of Proposition 1.2 is that this enables us to replace
objects like £ whose Hodge filtrations have infinitely many steps by objects like Gj,
whose Hodge filtration has essentially only two steps. In fact, over T'°%  the relative
connection Vg on & actually extends to a full connection V' modulo p, so (€g,, V') defines
a Galois representation onto some F-vector space E' (C El\;‘/p ® BT(U'#)p,) of dimension

two. Moreover, G, has a filtration (defined by taking divided powers of the augmentation
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ideal of D§* — F,,) whose subquotients are tensor products of Sgp ® BT (U ®)g, with
symmetric powers of Q°(—1)g . That is to say, we know that FO(—)F=! for all of these
subquotients is as desired, so next we want to consider the issue of whether the various
extensions involved split over B*(U'8). But this issue is precisely that discussed in the
proof of Theorem 2.4 of [Falt], §2. Thus, we see that we have enough Frobenius invariants,
at least over the PD-completion of Dgal. But it is a simple exercise to see that the fact that
the original Frobenius action is defined over Dgal (i.e., not just over the PD-completion
of DF!) implies that the Frobenius invariants will also be defined over D itself. This
completes the proof. ()

Let X? g 4o ylog glos T7°8. Similarly, we have Ué? & C X%,? . Now we have a natural
771((U%,? )k )-action on Gj, Since this action preserves the filtration and commutes with

Frobenius, we thus get an action of 7y ( (UITO &) k) on B which is compatible with mul-
tiplication by elements of Dgal and the Il g-action on Dgal. Moreover, as we vary the
open subset U C X, the resulting E(U;al’s are clearly compatible. Thus, they glue together

to form a m; ((X10%) k )-DG*-module

Gal
EX

We state this as a Theorem:

Theorem 1.4. The crystalline-induced MFY -object

(Ep; F(Ep); Pep; Vep)

of Theorem 1.1 has associated to it an (up to +1) w1 ((X3%) )-DS* -module

Gal
EX

which is a free Dgal—module of rank two. We shall refer to E$* as the crystalline-induced
Galois representation associated to the induced MFY-object of Theorem 1.1.

Remark. Unlike the case of canonical curves, where one actually has a dual crystalline
representation (in the sense of [Falt], §2) into GL3 (Z,), in the case of noncanonical curves,
E§§a1 is as close a p-adic analogue as one can get to the canonical representation in the
complex case. In the following subsection, we shall make the phrase “as close as one can
get” more precise.
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Relation to the Canonical Affine Coordinates

Let 79 — S8 he the inverse limit of the coverings obtained by iterating ®°2. Let
X;? j — T8 be the pull-back to 7.9 of X'°& — S'°2 Let us choose base-points once and
for all, and let

def o def o
I = m((X5)k); oo = m((X52)K)

oo

Thus, I, C II; is a closed subgroup. In the preceding subsection, we constructed a Dgal—
II;-module which we called E)(%al. If we restrict our Galois representations from II; to I,
then we obtain a Il,,-equivariant surjection

. Gal

whose kernel is the augmentation ideal Igal, i.e., the PD-ideal generated by anl. Thus, if
we base change Egal by ms, we obtain a rank two Z,-module with a continuous Il-action
which we denote by:

def ,@Gal
EO - EX ®D§al,7rs ZP

Thus, in summary, Fy has the advantage that it is of rank two over Z,, but the disadvantage
that it only has a Il.- (as opposed to a full II;-) action, while E§§al has the advantage
that is has a natural II;-action, but the disadvantage that it is of rank two over the rather
large ring of additive periods Dgal. In this subsection, we show that the canonical affine
coordinates (of Chapter III, Theorem 3.6) measure precisely the degree to which the TI
action on Fy cannot be extended to a full action of II;.

We begin with the following fundamental observation. Let A C Il C II; be the
geometric fundamental group, i.e., the kernel of the natural morphism II; — Wl(T}?g). Let
us consider the exact sequence of Il,,-modules

0 — Fo ©z, T§/(T§)? — B ©pgu DI /(TG — Fo — 0

By considering the underlying A-module structures, we obtain that the above exact se-
quence defines an extension class

7 € HY(A,Ad(Ey)) ©, I /(TG = H' (A, Ad(E)) @z, Q5™

which is fixed by the natural action of 7 ((T%8)) on this cohomology group. On the
other hand, because our original indigenous bundle is ordinary, we see that we have a
71 ((T'98) i )-equivariant inclusion
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(Q5™)Y — H'(A, Ad(Ey))

Then we claim that 7% is precisely the class in H' (A, Ad(Ep)) @z, Q5™ that corresponds
to this inclusion. Indeed, this follows immediately from observing that n<! is essentially
the Galois version of the class ne (the obstruction to the existence of a full connection on
&) that we encountered on our way to constructing £p. It then follows immediately from
the way one passes from MJFV-objects to Galois representations that n%? is the above
inclusion, as claimed. This observation concerning n“® will be the fundamental “hard
fact” underlying what we do in this subsection; the rest will be general nonsense.

The general nonsense that we will use is the theory of [Schl]. Let us denote the
[o-module Ey ®z, F), by (Ep)r,. Note that since over T2 the obstruction to putting
a full connection on &g, vanishes, so we get a genuine MJF V_object (whose underlying
vector bundle is (p ® Ds/Is)r,) modulo p. Thus, the Il -action on (Ep)r, extends to
a natural (dual crystalline) action of II; on (Ey)r,. We apply Schlessinger’s theory to the
functor on artinian rings B with residue field F, that assigns to such a ring B the set of
isomorphism classes of continuous representations of A on a free B-module Ep of rank
two such that (Ep) ®p F, = (Eo)r,. Since H'(A,Ad((Eo)r,)) is zero if ¢ # 1, and of
dimension 6g — 6 + 2r over F,, if i = 1, it follows easily from [Schl] that this functor is
prorepresented by a formal scheme R over Z,. Moreover, R is formally smooth over Z,,
of relative dimension 6g — 6 + 2r.

Now we claim that there is a natural continuous action of 71 ((7'°8) ) on R. Indeed,
let a € TI;. Since A C II; is a normal subgroup, for any representation of A on some Ep
as above, we obtain a new representation by conjugating elements of A by «, and then
acting on Ep in the original fashion. Since the original A-action on Fp extends to a full
I1;-action on (Ep) ®p F,, it follows that this new representation is isomorphic to the old
after base change by B — F,,. Thus, the new representation defines a new B-valued point
of R. This defines an action of II; on R which is clearly trivial on A C IIy. Thus, we
obtain a natural action of 7 ((7'°8)x) on R.

Let us now turn to applying R to understanding the II;-module E)G{'“. Let ﬁgal be
the p-adic completion of Dg'al. The underlying A-module structure on E$?! defines a
classifying morphism

K Spf(DS?) — R

(This is O.K. despite the fact that ﬁgal ®z,Z/ p™NZ is not artinian, since A is topologically
finitely generated.) Let

oo : Spf(Z,) — R

be the composite of Spf(mg) with k. Let RFP be the p-adic completion of the PD-envelope
of R at og. Let
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PD . Spf(ﬁgal) _, RPD

be the morphism induced by . Then the morphism induced by <P on the Zariski tangent
spaces at oq is precisely the injection corresponding to the class n%? considered above.
Thus, we have the following:

PD

Lemma 1.5. The morphism k" is a closed immersion of formal schemes.

Now let us consider the fact that the A-module structure on E¢?! actually comes from
a IIj-module structure which is D§l-semilinear (with respect to the II;-action on D&
through m; (T}?g)). If we translate this statement by means of the functorial interpretation
of R, we obtain the following:

Lemma 1.6. The morphism k is m (T}?g)-equivam‘ant with respect to the natural mp (T}?g)-
actions on D§* and R.

Now let ¢ : I' — 7y (T}?g ) be a continuous homomorphism of topological groups. Let

1—-A—=IIr -T—1

be the pull-back of the group extension

1—>A—>H1—>71'1(T11?g)—>1

by means of ¢. Then one can consider the issue of whether or not the A-action on FEj
extends to a continuous, Z,-linear action of IIr on Ey. Note that since H°(A, Ad(Ep)) = 0,
as long as we require that the associated determinant representation of Il is the cyclotomic
character, such an extension will always be unique (up to +1). On the other hand, by the
same reasoning as that used in Lemma 1.6, the A-action on Ej will extend to a Ilp-action
on Ej if and only if the Z,-valued point oy of R is fixed by I' (acting through ¢). Moreover,
by the preceding two lemmas, we see that o is fixed by I' if and only if the Z,-valued point
of ﬁgal defined by 7g is stabilized by I". But this, in turn, is equivalent to the statement
that the restriction of the canonical extension class 7¢ (discussed just before Definition 1.5
of Chapter III) becomes trivial when restricted to I.

Now let us suppose that (B, mp) is a local ring with residue field k& which is p-adically
complete, Z,-flat, and has a topologically nilpotent PD-structure on mp. (Note that for
such aring B, log : (1+mp) — mp and exp : mp — (1+mp) define inverse isomorphisms.)
Let IV = m1(Spf(B) k). Suppose further that

Y : Spf(B) — S
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is a morphism whose image avoids the divisor defining the log structure on S'°&. Then for
some closed subgroup I' C I" of finite index, we have a morphism ¢ : I' — 7y (T}?g ) which is
compatible with the morphism induced on fundamental groups by . Recall from Chapter
ITI, Theorem 3.8, the canonical affine coordinates corresponding to ). These coordinates
are valued in B (or, more precisely, in mp). Moreover, they are zero if and only if the
class ng becomes zero when restricted to I'V. Tt is easy to see that ne|rr = 0 if and only
if ng|r = 0. Also, we know from Chapter III that ) corresponds to a canonical curve if
and only if the canonical affine coordinates are zero. Thus, putting everything together,
we obtain the following result:

Theorem 1.7. The morphism 1 corresponds to a canonical curve if and only if the
A-action on Ey extends to a Zy-linear, continuous action of Il on Ey.

More generally, but less precisely, we see that:

(*) The canonical affine coordinates in mp associated to v are a mea-
sure of the obstruction to extending the A-action on Ey to a Z,-linear,
continuous action of Illp on Ej.

Since the class 7 is “as nonzero as it can be” on S'°%, we thus see that we have justified
the statement made at the end of the preceding subsection that the IT;-module E$?! is “as
close as one can get” to extending the A-action on Ej to a full II;-action.

Remark. In some sense, we can describe what we have done in this subsection as follows.
Consider the obstruction to extending the A-action on Ej to an action of IIp. A priori,
this obstruction is highly nonlinear and difficult to get one’s hands on explicitly. Note that
this nonlinearity exists despite the fact that we already have a Il.-action on Fy, and the
discrepancy between IT; and Il is “essentially” a linear Z,-space of rank 3g—3+7. Rather,
the nonlinearity arises fundamentally from the fact that we are considering representations
into GL;‘E, which is not an abelian (or even solvable) group. In particular, the moduli space
R of representations of A into GL;E has no natural linear structure. Thus, the point of
constructing E)Céal and reinterpreting the existence of E)Cgal in terms of R, as we have done
in this subsection, was to linearize this obstruction by means of the uniformization of (the
relevant part of) RYP by means xF'P.

Remark. For the reader interested in pursuing analogies with the complex case, we also
make the following observation. Since R is the local moduli space of deformations of the
canonical representation A — GL;(ZP) of the geometric fundamental group, it is natural
to regard R as a sort of local p-adic analogue of the space R¢ of isomorphism classes of
representations of the geometric fundamental group into PSLy(C) in the complex case.
Thus, Rc has complex dimension 6g — 6 + 2r. Inside R, one has Fricke space Rgr,
with real dimension 6r — 6 + 2r, corresponding to the representations into PSLy(R). In a
neighborhood of the canonical representation of a curve, Rg maps diffeomorphically onto
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My . Thus, one can regard the subspace Spf (ﬁgal) — RFP as analogous to Fricke space
Rr € Rc in the complex case.

The Parabolic Case

Before proceeding, we pause to take a brief look at what happens for elliptic curves
(regarded parabolically). Although there are many similarities between the parabolic and
hyperbolic cases, there are also certain differences. This is not so surprising if one considers
the canonical representations arising from uniformizations in the complex case. Indeed,
in the complex context, for hyperbolic curves, the canonical representation of the funda-
mental group into PSLs(R) is completely well-defined up to conjugation by an element of
PSLy(R), while for elliptic curves, the morphism (induced by deck transformations on the
uniformization by C) gives a representation of the fundamental group into the group of
translations G, (C) of the complex plane, but this representation is not well-defined up to
conjugation by an element of G,(C). Rather, there is an ambiguity of multiplication by a
complex number.

On the other hand, this same phenomenon of “lack of rigidity” ultimately is a con-
sequence of the overall linearity of the situation, which has positive aspects, as well. For
instance, one can carry out the construction of the induced MFY -object (Theorem 1.1) for
elliptic curves just as in the hyperbolic case. However, precisely because the obstruction
to defining an MJFVY-object is entirely linear from the outset, this approach is a sort of
overkill. Thus, in the following we propose to examine the obstruction to defining a “full”
MZFV-object (i.e., the same obstruction as the one we examined in the hyperbolic case)
directly, at the level of Galois representations, without resorting to the tool of crystalline
induction.

Thus, let us assume that f°8 : Xl — glog ig _an ordinary zero pointed curve of
genus one such that the classifying morphism S — M ¢ is étale. Since the canonical
representation should be an extension of a rank one étale representation by its dual Tate

twisted once, we consider the local system R!( }‘gg)et,*zpu) on S}?g. Let us denote the

IIs ot Wl(S}Sg)—module corresponding to this local system by H'. Then there exists a

rank one Ilg-submodule F(1) C H! such that the action of IIg on FE is unramified, and
we have an exact sequence:

0—FE(1)—H' - EY—0

Suppose that E’ is an étale Ilg-module such that (E')®? = EY. Then, the canonical
representation of the universal elliptic curve should be an extension of E’ by (E')Y(1). If
we tensor the above exact sequence by E, we get an exact sequence of IIg-modules

0— E*01) - H'®E—Z,—0

Thus, the obstruction to the existence of such a canonical representation is precisely the
obstruction to lifting 1 € Z,, in the above exact sequence. This obstruction class lies in
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H' (T, B%(1))

and coincides with the class ne defined by the canonical Frobenius lifting ®'° on §'°. That
is to say, we end up with essentially the same conclusion as in the hyperbolic case: Namely,
that the obstruction to the existence of a “canonical representation” for the universal
ordinary elliptic curve (defined on all of 7 (X}?g )) is given precisely by the class 1 defined
by the canonical Frobenius lifting.

§2. Canonical Objects Over the Stack of Multiplicative Periods

In this Section, we note that by working over the stack of multiplicative periods, we
can construct all the objects that we are familiar with from the case of canonical curves.

The Stack of Multiplicative Periods

Let S8 = (N ;rf )1°8. Let ®!°% be the canonical Frobenius lifting on S'°8 (as in Chapter

II1, Theorem 2.8). If, for some N > 1, we take the N'" iterate of ®'°8, we get a finite, flat
covering

((I)log)N . Slog N Slog

of S1°¢. Let P& be the inductive limit of these coverings (as N goes to infinity). Let Plos
be the p-adic completion of P°¢.

Definition 2.1. We shall call P°¢ (respectively, JSIOg) the universal (respectively, com-
plete) stack of multiplicative periods.

Unlike the rings of additive periods considered earlier, which, roughly speaking, are gen-
erated by adjoining the logarithms of the multiplicative parameters to Z,, the structure
sheaf of the stack of multiplicative periods is obtained essentially by adjoining all p-power
roots of the multiplicative parameters to the structure sheaf of the original base scheme
(or stack).

More generally, let 7'°% be a formal log scheme, whose underlying scheme T is p-
adically complete and flat over Z,. Let hlog . Ylog _, T8 he an r-pointed stable curve
of genus g that arises from some classifying morphism 7'°¢ — S8 Then if we pull back
the morphism P& — S'°2 via the classifying morphism 7'°% — S°¢ for hl°2 we obtain
an object

1
PTog — TlOg
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over T'°%. Let ]3115’ ¢ be the p-adic completion of qu? &, We shall always assume that:

(*) The log structure of Tgf is trivial over an open dense set.

For instance, typically 7'°% will be the normalization of Z, in a finite field extension of Q)
with a log structure that is trivial in characteristic zero.

Definition 2.2. We shall call P%O £ (respectively, ﬁ%o &) the (respectively, completed) formal
scheme of multiplicative periods associated to the curve hi°% : Ylog — Tlog,

Note that PilpO ¢ depends on the choice of classifying morphism 7'°% — S1°¢ for the curve

. . -1 . .
that lifts the morphism 7'°% — M goff defined by the curve itself. That is, P}O & depends on
a choice of quasiconformal equivalence class for h1°8 : Y18 — Tlog,

Remark. Often in what follows we shall work in the universal case, that is, over S8 and
thus obtain objects over P°¢ (or P'°8). However, one should always remember that the
objects constructed define (by restriction) objects over lepo € (or ]3;) &) for any r-pointed
stable curve of genus g over T'°% satisfying the hypotheses just stated.

The Canonical Log p-divisible Group

Let S'°& = (N2id)l°g: that is, the locus of smooth ordinary curves (with a choice of
quasiconformal equivalence class). Thus, the log structure on S8 is trivial. Let f!°% :
Xlog — Glog he the universal curve. Let f°¢[N] : X'°8[N] — S'°& be the pull-back of
f°¢ by the N'" iterate of the canonical Frobenius. Thus, if we pull (£,Vg) back to
X'°¢[N] and reduce modulo p¥, the obstruction to defining a full connection (relative
to X'°8[N] — Spec(A)) vanishes, and so, we obtain an MJFY-object, which we shall
call £[N]. Alternatively, this MFY-object can be obtained taking the MFV-object in
Theorem 1.1, pulling back to X'°8[N], reducing modulo p”, and then reducing modulo
I%. By [Falt], Theorem 7.1, away from the divisor at infinity, and the method of Chapter
IV, §2 (following [Kato2]) at the divisor at infinity, £[/N] defines a finite, flat log group
object G[N] on X'°8[N]. Let P& — S'°8 he the stack of multiplicative periods. Let
flogoo] : X'8[o0] — P2 be the pull-back of f°8 to P8, Then by restricting from
X!2[N] to X'°8[co] and then taking the inductive limit, we obtain an (up to +1) log
p-divisible group

Gloc] = lim G[N]| xos (]
on X'°8[0].

Definition 2.3. We shall call G[oc] the canonical log p-divisible group on X'°8[oo].
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If we invert p, and pass to p-adic Tate modules, then we obtain an étale local system of
Z,®Z,’s (up to £1) on X'°8[cc]q,. Now in the notation of §1, we have

[loe = m1(X'*¥[o0]q,)

Thus, the p-adic Tate module of G[oo]q, is given by the representation of Il on Ey which
was discussed in §1. Let us denote this representation by

oo : Moo — GLE(Ep)

Definition 2.4. We shall call po, the canonical Galois representation of 1.

Remark. If T is any p-adically complete formal scheme which is Z,-flat, and ¢ : T — N ;ﬁqd
is a morphism, then even though the canonical log p-divisible group and the canonical
Galois representation are not defined until one goes up to the scheme of multiplicative
periods, one can nonetheless pull-back the canonical indigenous bundle (£, V¢)nr on N, g‘ﬁd

to obtain an indigenous bundle (€, V¢)r on X;? & — T. This indigenous bundle is defined
over T, i.e., one needn’t pass to the scheme of multiplicative periods.

Definition 2.5. We shall call (£, V¢)r the canonical indigenous bundle on Xgpog.

One should always remember that one only obtains the canonical indigenous bundle after
choosing a lifting ¢ : T — N ;}d (i.e., a quasiconformal equivalence class) of the classifying
morphism 7' — M, , of the curve.

The Canonical Frobenius Lifting

We continue with the notation of the preceding subsection. It follows from Chapter
IV, Proposition 3.2, that the supersingular divisor D C Xp, (where flog . Xlog _, gGlog
is the universal curve) is étale over Sg,. We shall denote its complement in X, the
ordinary locus of X'°&, by X°. Now it is immediate that the construction of the canonical
Frobenius lifting over the ordinary locus (preceding Theorem 1.6 of Chapter IV) carries
over immediately to the present case (where the base is S, as opposed to the ring of Witt
vectors with coefficients in a perfect field). Thus, if we denote base-change by ®!°¢ (the
canonical Frobenius) by means of a superscript “F,” we obtain the universal analogue of
Theorem 1.6 of Chapter IV:

Theorem 2.6. There exists a unique ordinary Frobenius lifting (called canonical)

(I){;;g . (Xlog)ord N ((Xlog>ord)F
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over the ordinary locus such that we get a horizontal morphism ®%EY — £ which preserves
the Hodge filtration.

Now let T" be any p-adically complete formal scheme which is Z,-flat, and let ¢ : T" —
N ;,rrd be a morphism. Let X;? & — T be the pull-back of the universal curve by ¢. Write
X;OE for the pull-back of the universal curve by ® o ¢. Then by restricting the morphism
(Pl)(;g of Theorem 2.7, we obtain a T-morphism

PR (XE)F — (XTB)

Thus, in the spirit of Definition 4.18 of Chapter IV, we make the following;:

Definition 2.7. We shall call X;)I% the Frobenius conjugate curve to X?g. We shall call

Cbl)(zi the p-adic Green’s function of the curve X;?g —T.

Next, we consider compactifications of this canonical Frobenius lifting. Let D[oo] C
Xoo]r, be the result of base-changing to P. Let D[oo] C X[o0] be the respective p-adic
completions. Let Xp[oo] be the completion of X|[oo] at D[oc]. Then just as in §3 of
Chapter IV, by looking at the universal deformation spaces of the canonical log p-divisible
group and its double Frobenius conjugate, we obtain an isomorphism

U X e [00] 2 Xploo]

Let Y[oo] — X[oo] be the finite, flat covering (of degree p + 1) parametrizing cyclic
subgroups (in the Drinfeldian sense) of the canonical log p-divisible group. Then, just as
before, there exists a divisor £ C ?[oo]pp that maps isomorphically onto D[oolg,. Let
Yg[oo] be the completion of Y[oo] at E. Then we obtain an embedding

(Dg,Ri) : Yi[oo] = Xploo] x5 X yr2 [o0]

P
The image of this embedding is a divisor, which, when restricted to the ordinary locus,
is equal to the union of the graph of the canonical Frobenius on (X'°8)°'d with its “W-
transpose,” as in Chapter IV, §3 (see the discussion preceding Definition 3.3).

Definition 2.8. We shall call ¥[oo] — X[o0], together with ¥ and (Dg, Rg) the com-
pactification of the canonical Frobenius lifting @ﬁg.

Thus, although the canonical Frobenius lifting (I>l§g is defined over S (without passing to

the stack of multiplicative periods), the compactification is only defined over the completed
stack of multiplicative periods.
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Note: The data following each term indicate the chapter and section where the term first

appears.
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associated Schwarz structure
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Bers embedding
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Hecke operators

Hecke type

height of a Frobenius lifting
Hilbert transformation
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Hodge section

hyperbolic metric
hyperbolic Riemann surface
hyperbolic volume

[gusa curve
indigenous bundle

of restrictable type
indigenous section
induced MFY-object
infinitesimal Verschiebung
intrinsic bundle

Jacobson’s formula

Kahler metrics and Frobenius liftings

Kodaira-Spencer morphism

local compactification of a Frobenius lifting
local height of a Frobenius lifting

locally intrinsic bundle

locally stable of dimension one

log admissible covering
log p-divisible group

marked
MFV -object

naive compactification of a Frobenius lifting

nilpotent indigenous bundle

normalized P1-bundle with connection
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Intro.1
Intro.1
Intro.1

I1.3

Intro.2, 1.2
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I11.2

V.1
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ordinary curve, hyperbolically
parabolically

ordinary Frobenius lifting

ordinary indigenous bundle

ordinary locus

p-curvature

parabolic Riemann surface
parabolic structure
parabolic volume element
partition curves
pre-Schwarz structure
pseudo-uniformizer

quasiconformal equivalence class, p-adic
quasiconformal function
quasidisk

real Riemann surface
renormalized Frobenius pull-back
ring of additive periods

scheme of multiplicative periods
Schwarz structure

Schwarzian derivative
Serre-Tate parameter

singular

small affine

small parameters

smooth and unmarked

stable curve

stack of multiplicative periods
supersingular divisor
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tangential local system
Teichmiiller metric
Teichmiiller uniformization
topological marking, p-adic
totally degenerate curve
trianalytic constant
function
triformal function

uniformizing Galois representation
uniformizing MFY -object

Verschiebung of an indigenous bundle

on f. (wl)?fs)®2(_p)

morphism

Weil-Petersson inner product
Weil-Petersson metric
Wolpert’s coordinates of degeneration
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Intro.1
Intro.1

I11.3

1.3

I.1

1.1

1.1

III.1
II.1

I1.2
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I1.2

Intro.1
Intro.1
Intro.1

Major Notation
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III.1
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II1.3
I1.2

11.3,
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I11.3
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II1.2

II1.2

II1.2
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I.1
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II.1
II1.1
1.2
II1.1
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II1.3
V.2
V.2
II1.1
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